Пример #1
0
    def _band_math(self, product, name, expression):

        GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()
        HashMap = jpy.get_type('java.util.HashMap')

        BandDescriptor = jpy.get_type(
            'org.esa.snap.core.gpf.common.BandMathsOp$BandDescriptor')

        targetBand = BandDescriptor()
        targetBand.name = name
        targetBand.type = 'float32'
        targetBand.expression = expression

        bands = jpy.array(
            'org.esa.snap.core.gpf.common.BandMathsOp$BandDescriptor', 1)
        bands[0] = targetBand

        parameters = HashMap()
        parameters.put('targetBands', bands)

        productMap = HashMap()
        if isinstance(product, list):
            for ind in range(len(product)):
                print('p{}'.format(ind + 1))
                productMap.put('p{}'.format(ind + 1), product[ind])
            result = GPF.createProduct('BandMaths', parameters, productMap)
        else:
            result = GPF.createProduct('BandMaths', parameters, product)

        return result
Пример #2
0
def classify(prepros_folder):
    for file in os.listdir(prepros_folder):

        ### Folder, date & timestamp
        classification = rootpath + "\\classification"
        scene_name = str(prepros_folder.split("\\")[X])[:32]  # [X] element of filepath, change this to match scene name. [:32] first caracters of element
        print("scene_name:", scene_name)
        output_folder = os.path.join(classification, scene_name)
        print("output_folder:", output_folder)
        polarization = str(file)[46:48] # polarization from filename

        if not os.path.exists(output_folder):
            os.mkdir(output_folder)

        GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()
        HashMap = snappy.jpy.get_type('java.util.HashMap')
        gc.enable()

        sentinel_1 = ProductIO.readProduct(os.path.join(prepros_folder, file))

        res = [20, 50]  # parameters for CFAR
        for r in res:
            resolution = r

            gd_window = resolution * 12.0
            bg_window = resolution * 37.0

            # AdaptiveThresholding (Constant False Alarm Rate CFAR)
            parameters = HashMap()
            parameters.put('targetWindowSizeInMeter', resolution)
            parameters.put('guardWindowSizeInMeter', gd_window)
            parameters.put('backgroundWindowSizeInMeter', bg_window)
            parameters.put('pfa', 6.0)

            target_1 = GPF.createProduct("AdaptiveThresholding", parameters, sentinel_1)
            parameters = None

            # Subset (extracting classification band)
            parameters = HashMap()
            parameters.put('bandNames', 'Sigma0_' + polarization + '_ship_bit_msk')

            outfile = output_folder + "\\" + scene_name + "_" + polarization + "_cfar_" + str(resolution) + "m"
            target_2 = GPF.createProduct("Subset", parameters, target_1)
            ProductIO.writeProduct(target_2, outfile, 'GeoTIFF-BigTIFF', pm)

            # Classification to vector
            ds = gdal.Open(str(outfile + ".tif"))

            rasterband = ds.GetRasterBand(1)

            dst_layername = outfile + "_Iceberg_outline"
            drv = ogr.GetDriverByName("GeoJSON")
            dst_ds = drv.CreateDataSource(dst_layername + ".geojson")
            dest_srs = ogr.osr.SpatialReference()
            dest_srs.ImportFromEPSG(4326)
            dst_layer = dst_ds.CreateLayer(dst_layername, dest_srs)

            gdal.Polygonize(rasterband, rasterband, dst_layer, -1, [], callback=None) # (input, mask, dest_layer,,,) 
def preprocesado():
    ##Aplicar correccion orbital
    global product
    global product_calibrated
    global HashMap
    print(product)
    parameters = HashMap()
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()
    parameters.put('orbitType', 'Sentinel Precise (Auto Download)')
    parameters.put('polyDegree', '3')
    parameters.put('continueOnFail', 'false')
    apply_orbit_file = GPF.createProduct('Apply-Orbit-File', parameters,
                                         product)

    ##Recortar la imagen
    r = shapefile.Reader(archivo_shape)
    g = []
    for s in r.shapes():
        g.append(pygeoif.geometry.as_shape(s))
    m = pygeoif.MultiPoint(g)
    wkt = str(m.wkt).replace("MULTIPOINT", "POLYGON(") + ")"

    #Usar el shapefile para cortar la imagen
    SubsetOp = snappy.jpy.get_type('org.esa.snap.core.gpf.common.SubsetOp')
    bounding_wkt = wkt
    geometry = WKTReader().read(bounding_wkt)
    HashMap = snappy.jpy.get_type('java.util.HashMap')
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()
    parameters = HashMap()
    parameters.put('copyMetadata', True)
    parameters.put('geoRegion', geometry)
    product_subset = snappy.GPF.createProduct('Subset', parameters,
                                              apply_orbit_file)

    #Mostrar las dimensiones de la imagen
    width = product_subset.getSceneRasterWidth()
    print("Width: {} px".format(width))
    height = product_subset.getSceneRasterHeight()
    print("Height: {} px".format(height))
    band_names = product_subset.getBandNames()
    print("Band names: {}".format(", ".join(band_names)))
    band = product_subset.getBand(band_names[0])
    print(band.getRasterSize())
    #plotBand(product_subset, "Intensity_VV", 0, 100000)

    ##Aplicar la calibracion de la imagen
    parameters = HashMap()
    parameters.put('outputSigmaBand', True)
    parameters.put('sourceBands', 'Intensity_VV')
    parameters.put('selectedPolarisations', "VV")
    parameters.put('outputImageScaleInDb', False)
    product_calibrated = GPF.createProduct("Calibration", parameters,
                                           product_subset)
    #plotBand(product_calibrated, "Sigma0_VV", 0, 1)
    print("PREPROCESAMIENTO HECHO EXITOSAMENTE")
Пример #4
0
def process_date(prod_list, out_dir, orbit, area_of_int, ref_raster,
                 polarizations):
    """products is a list of products of the same orbit (ASCENDING/DESCENDING) and date (STATE_VECTOR_TIME[0:11]). Returns product subset for a given polarizaton"""
    if len(prod_list) > 1:
        # 0 Slice assembly
        param_sliceass = hashp()
        param_sliceass.put('selectedPolarisations', 'VH,VV')
        product = GPF.createProduct("SliceAssembly", param_sliceass, prod_list)
    else:
        product = prod_list[0]

    # 1 Apply orbit file
    param = hashp()
    product = GPF.createProduct("Apply-Orbit-File", param, product)

    # 2 Radiometric calibration
    param = hashp()
    param.put('outputSigmaBand', True)
    param.put('sourceBands', getBandNames(product, 'Intensity_'))
    param.put('selectedPolarisations', 'VH,VV')
    param.put('outputImageScaleInDb', False)

    product = GPF.createProduct("Calibration", param, product)

    # 3 Terrain correction
    param = hashp()
    param.put('demResamplingMethod', 'NEAREST_NEIGHBOUR')
    param.put('imgResamplingMethod', 'NEAREST_NEIGHBOUR')
    param.put('applyRadiometricNormalization', True)
    param.put('demName', 'SRTM 3Sec')
    param.put('pixelSpacingInMeter', 10.0)
    param.put('sourceBands', getBandNames(product, 'Sigma0_'))
    param.put('mapProjection', 'WGS84(DD)')

    product = GPF.createProduct("Terrain-Correction", param, product)

    # 4 Subset
    if area_of_int is not None:
        param = hashp()
        param.put('geoRegion', area_of_int)
        param.put('outputImageScaleInDb', False)
        param.put('sourceBandNames', getBandNames(product, 'Sigma0_'))

        product = GPF.createProduct("Subset", param, product)

    out_name = out_dir + 'S1_' + orbit + '_' + product.getName()[24:32] + '_'

    write_product(product, out_name, ConcisePM(System.out))
    def subset(product, borderRectInGeoCoor):
        from snappy import jpy
        from snappy import ProductIO
        from snappy import GPF
        from snappy import HashMap

        xmin = borderRectInGeoCoor[0]
        ymin = borderRectInGeoCoor[1]
        xmax = borderRectInGeoCoor[2]
        ymax = borderRectInGeoCoor[3]

        p1 = '%s %s' % (xmin, ymin)
        p2 = '%s %s' % (xmin, ymax)
        p3 = '%s %s' % (xmax, ymax)
        p4 = '%s %s' % (xmax, ymin)
        wkt = "POLYGON((%s, %s, %s, %s, %s))" % (p1, p2, p3, p4, p1)
        WKTReader = jpy.get_type('com.vividsolutions.jts.io.WKTReader')
        geom = WKTReader().read(wkt)

        HashMap = jpy.get_type('java.util.HashMap')
        GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

        parameters = HashMap()
        parameters.put('copyMetadata', True)
        parameters.put('geoRegion', geom)
        parameters.put('outputImageScaleInDb', False)
        subset = GPF.createProduct('Subset', parameters, product)
        return subset
Пример #6
0
def do_mosaic(source):
    parameters = HashMap()
    parameters.put('pixelSize', 200.0)
    parameters.put('resamplingMethod', 'BILINEAR_INTERPOLATION')
    parameters.put('mapProjection', "AUTO:42001")
    parameters.put('variables', 'Sigma0_HH')
    output = GPF.createProduct('SAR-Mosaic', parameters, source)
def topsarSplit(product):

    if debug >= 2:
        print(cyan + "applyingOrbitFile() : " + bold + green + "Run to SNAP... " + endC )

    # Instance de GPF
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    # Def operateur SNAP
    operator = 'TOPSAR-Split'

    # Set des parametres
    parameters = HashMap()
    op_spi = GPF.getDefaultInstance().getOperatorSpiRegistry().getOperatorSpi(operator)
    op_params = op_spi.getOperatorDescriptor().getParameterDescriptors()
    for param in op_params:
        if debug >= 2:
            print(cyan + "topsarSplit() : " + bold + green + str(param.getName()) + " : " + str(param.getDefaultValue()) + endC)
        parameters.put(param.getName(), param.getDefaultValue())
    parameters.put('subswath', 'IW1')
    parameters.put('selectedPolarisations', 'VV')

    if debug >= 2:
        print(parameters)

    # Get snappy Operators
    result = GPF.createProduct(operator, parameters, product)

    if debug >= 2:
        print(cyan + "topsarSplit() : " + bold + green + "Done... " + endC)

    return result
Пример #8
0
    def band_maths(self, expression):
        """
        Perform a SNAP GPF BandMath operation on the product, excluding non-vegetation and non-soil pixels.

        Args:

            expression: The band maths expression to execute
        """
        print("\tBandMaths, product={}".format(self.product.getName()))

        BandDescriptor = jpy.get_type(
            'org.esa.snap.core.gpf.common.BandMathsOp$BandDescriptor')

        band = BandDescriptor()
        band.name = 'band_maths'
        band.type = 'float32'
        band.expression = expression
        band.noDataValue = np.nan

        bands = jpy.array(
            'org.esa.snap.core.gpf.common.BandMathsOp$BandDescriptor', 1)
        bands[0] = band

        HashMap = jpy.get_type('java.util.HashMap')
        parameters = HashMap()
        parameters.put('targetBands', bands)

        self.product = GPF.createProduct('BandMaths', parameters, self.product)
        return self.product
Пример #9
0
def calibration(product):
    parameters = HashMap()
    parameters.put('outputSigmaBand', True)
    parameters.put('sourcebands', 'Intensity_VV')
    parameters.put('selectedPolarisations', "VV")
    parameters.put('outputImageScaleInDb', False)
    return GPF.createProduct("Calibration", parameters, product)
Пример #10
0
def terrainCorrection(product):
    parameters = HashMap()
    parameters.put('demName', 'SRTM 3Sec')
    parameters.put('pixelSpacingInMeter', 10.0)
    parameters.put('sourceBands', 'Sigma0_VV')

    return GPF.createProduct("Terrain-Correction", parameters, product)
Пример #11
0
    def apply_orbit_file(self,
                         write_intermediate=False):

        parameters = self.HashMap()

        dataproduct = GPF.createProduct("Apply-Orbit-File", parameters, self.dataproduct_r)

        self.operations_list.append('ApplyOrbit')

        SF_filepath = ""

        # Get a progressMonitor object
        monitor = self.createProgressMonitor()

        if write_intermediate:
            # Write data product with BEAM-DIM format to given file path
            # ProductIO.writeProduct(Product product, String filePath, String formatName)
            SF_filepath = Path(self.working_dir, self.name_with_safe + "_ORB")
            print('Writing out Orbit File corrected product')

            ProductIO.writeProduct(dataproduct, str(SF_filepath), 'BEAM-DIMAP', monitor)
             # Set start time and loop counter
            finish_time = datetime.datetime.now()  # for calculation
            elapsed_time = finish_time - self.start_time
            print(elapsed_time.strftime("%H:%M:%S"))


        if os.path.exists(SF_filepath + ".dim"):
            print("Completed applying orbit file:", SF_filepath)
        else:
            print("Completed applying orbit file: data product saved to in-memory")

        self.intermediate_product = dataproduct
Пример #12
0
 def terrain_flattening(terflt):
     parameters = HashMap()
     parameters.put('demName', 'SRTM 1Sec HGT')
     parameters.put('demResamplingMethod', 'BICUBIC_INTERPOLATION')
     parameters.put('reGridMethod', True)
     parameters.put('sourceBands', 'Beta0_' + polarization)
     return GPF.createProduct('Terrain-Flattening', parameters, terflt)
def goldstein_phasefiltering(product):
    parameters.put("Adaptive Filter Exponent in(0,1]:", 1.0)
    parameters.put("FFT Size", 64)
    parameters.put("Window Size", 3)
    parameters.put("Use coherence mask", False)
    parameters.put("Coherence Threshold in[0,1]:", 0.2)
    return GPF.createProduct("GoldsteinPhaseFiltering", parameters, product)
def terrain_correction(src, projection):
    parameters = HashMap()
    parameters.put("demName", "SRTM 1Sec HGT")  # ~25 to 30m
    parameters.put("externalDEMNoDataValue", 0.0)
    parameters.put("externalDEMApplyEGM", True)
    parameters.put("demResamplingMethod", "BICUBIC_INTERPOLATION")
    parameters.put("imgResamplingMethod", "BICUBIC_INTERPOLATION")
    parameters.put("pixelSpacingInMeter", 10.0)
    parameters.put("pixelSpacingInDegree", 8.983152841195215E-5)
    parameters.put("mapProjection", projection)
    parameters.put("alignToStandardGrid", False)
    parameters.put("standardGridOriginX", 0.0)
    parameters.put("standardGridOriginY", 0.0)
    parameters.put("nodataValueAtSea", True)
    parameters.put("saveDEM", False)
    parameters.put("saveLatLon", False)
    parameters.put("saveIncidenceAngleFromEllipsoid", False)
    parameters.put("saveLocalIncidenceAngle", False)
    parameters.put("saveSelectedSourceBand", True)
    parameters.put("outputComplex", False)
    parameters.put("applyRadiometricNormalization", False)
    parameters.put("saveSigmaNought", False)
    parameters.put("saveGammaNought", False)
    parameters.put("saveBetaNought", False)
    parameters.put("incidenceAngleForSigma0",
                   "Use projected local incidence angle from DEM")
    parameters.put("incidenceAngleForGamma0",
                   "Use projected local incidence angle from DEM")
    parameters.put("auxFile", "Latest Auxiliary File")
    return GPF.createProduct("Terrain-Correction", parameters, src)
Пример #15
0
def topophase_removal(product):
    parameters.put("Orbit Interpolation Degree", 3)
    parameters.put("Digital Elevation Model", "SRTM 1Sec HGT (Auto Download)")
    parameters.put("Tile Extension[%]", 100)
    parameters.put("Output topographic phase band", True)
    parameters.put("Output elevation band", False)
    return GPF.createProduct("TopoPhaseRemoval", parameters, product)
Пример #16
0
def do_subset_band(source, wkt):
    print('\tSubsetting...')
    parameters = HashMap()
    parameters.put('geoRegion', wkt)
    #parameters.put('outputImageScaleInDb', True)
    output = GPF.createProduct('Subset', parameters, source)
    return output
Пример #17
0
def resample(DIR, band, resolution):
    """
    resamples a band of a SENTINEL product to a given target resolution

    :param DIR: base directory of Sentinel2 directory tree
    :param band: band name (e.g. B4)
    :param resolution: target resolution in meter (e.g 10)

    :return: resampled band
    """

    from snappy import GPF

    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    HashMap = jpy.get_type('java.util.HashMap')
    BandDescriptor = jpy.get_type(
        'org.esa.snap.core.gpf.common.BandMathsOp$BandDescriptor')

    parameters = HashMap()
    parameters.put('targetResolution', resolution)
    parameters.put('upsampling', 'Bicubic')
    parameters.put('downsampling', 'Mean')
    parameters.put('flagDownsampling', 'FlagMedianAnd')
    parameters.put('resampleOnPyramidLevels', True)

    product = ProductIO.readProduct(DIR)
    product = GPF.createProduct('Resample', parameters, product)

    rsp_band = product.getBand(band)

    return rsp_band
Пример #18
0
def goldsteinPhasefiltering(product):

    if debug >= 2:
        print(cyan + "goldsteinPhasefiltering() : " + bold + green +
              "Run to SNAP... " + endC)

    # Instance de GPF
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    # Def operateur SNAP
    operator = 'GoldsteinPhaseFiltering'

    # Set des parametres
    parameters = HashMap()

    parameters.put("Adaptive Filter Exponent in(0,1]:", 1.0)
    parameters.put("FFT Size", 64)
    parameters.put("Window Size", 3)
    parameters.put("Use coherence mask", False)
    parameters.put("Coherence Threshold in[0,1]:", 0.2)

    if debug >= 2:
        print(parameters)

    # Get snappy Operators
    result = GPF.createProduct(operator, parameters, product)

    if debug >= 2:
        print(cyan + "goldsteinPhasefiltering() : " + bold + green +
              "Done... " + endC)

    return result
Пример #19
0
def interferogram(product):

    if debug >= 2:
        print(cyan + "interferogram() : " + bold + green + "Run to SNAP... " +
              endC)

    # Instance de GPF
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    # Def operateur SNAP
    operator = 'Interferogram'

    # Set des parametres
    parameters = HashMap()

    parameters.put("Subtract flat-earth phase", True)
    parameters.put("Degree of \"Flat Earth\" polynomial", 5)
    parameters.put("Number of \"Flat Earth\" estimation points", 501)
    parameters.put("Orbit interpolation degree", 3)
    parameters.put("Include coherence estimation", True)
    parameters.put("Square Pixel", False)
    parameters.put("Independent Window Sizes", False)
    parameters.put("Coherence Azimuth Window Size", 10)
    parameters.put("Coherence Range Window Size", 10)

    if debug >= 2:
        print(parameters)

    # Get snappy Operators
    result = GPF.createProduct(operator, parameters, product)

    if debug >= 2:
        print(cyan + "interferogram() : " + bold + green + "Done... " + endC)

    return result
Пример #20
0
def dem_extract(in_prod, xpix, ypix, bandname="altitude"):
    """Run the S3 SNOW DEM tool.

    Args:
        inprod (java.lang.Object): snappy java object: SNAP image product
        xpix (float): x position in product to query
        ypix (float): y position in product to query
        bandname (str): DEM band name in product

    Returns:
        slope_vals (dictionnary): values from all bands at the given x,y"""

    # Initialise a HashMap
    parameters = HashMap()

    parameters.put("elevationBandName", bandname)
    parameters.put("copyElevationBand", "true")

    # Run slope operator
    s3snow_slope = GPF.createProduct("SlopeCalculation", parameters, in_prod)

    # Initialise dictionnary to store data
    slope_vals = {}

    # Get all bands
    for band in list(s3snow_slope.getBandNames()):
        currentband = s3snow_slope.getBand(band)
        currentband.loadRasterData()
        slope_vals[band] = currentband.getPixelFloat(xpix, ypix)

    return slope_vals
def TOPSAR_Split(inFile, subswath, firstBurstIndex, lastBurstIndex,
                 polarizations):
    parameters = sc.TOPSAR_Split_config(subswath, firstBurstIndex,
                                        lastBurstIndex, polarizations)
    TOPSAR_Split_Out = GPF.createProduct("TOPSAR-Split", parameters, inFile)
    logger.info("Finished Process: TOPSAR Split")
    return TOPSAR_Split_Out
Пример #22
0
def backGeocoding(product):

    if debug >= 2:
        print(cyan + "backGeocoding() : " + bold + green + "Run to SNAP... " +
              endC)

    # Instance de GPF
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    # Def operateur SNAP
    operator = 'Back-Geocoding'

    # Set des parametres
    parameters = HashMap()

    parameters.put("Digital Elevation Model", "SRTM 1Sec HGT (Auto Download)")
    parameters.put("DEM Resampling Method", "BICUBIC_INTERPOLATION")
    parameters.put("Resampling Type", "BISINC_5_POINT_INTERPOLATION")
    parameters.put("Mask out areas with no elevation", True)
    parameters.put("Output Deramp and Demod Phase", False)

    if debug >= 2:
        print(parameters)

    # Get snappy Operators
    result = GPF.createProduct(operator, parameters, product)

    if debug >= 2:
        print(cyan + "backGeocoding() : " + bold + green + "Done... " + endC)

    return result
Пример #23
0
    def convertProduct(self, product, sensor="OLCI"):
        """
        Return OLCI *snappy.Product* data product object with units converted to reflectance

        :type product: *snappy.Product*
        :param product: In-memory OLCI L1 data product

        :param type: str
        :param sensor: name of product sensor (default "OLCI")

        :return:
            :product_processed: *snappy.Product*

            In-memory OLCI L1 data product with units converted to reflectance
        """

        HashMap = jpy.get_type('java.util.HashMap')
        params = HashMap()
        params.put("sensor", sensor)
        params.put("conversionMode", "RAD_TO_REFL")
        params.put("copyNonSpectralBands", "true")

        product_processed = GPF.createProduct("Rad2Refl", params, product)

        return product_processed
Пример #24
0
    def open_subset(self, geo_extent, copymetadata="true"):
        """ Create a subset of a given SNAP product.

        From a given set of coordinates defining a region of interest create
        a subset product containing all the bands from the original product.

        Args:
            inprod: ESA SNAP product object
            geo_extent (wkt): BoundingBox in WKT format
            copymetadata (bool): Copy all bands to subset product

        Returns:
            (self.product): ESA SNAP product object
        """

        # Empty HashMap
        parameters = HashMap()

        # Subset parameters
        geo = WKTReader().read(geo_extent)
        parameters.put("geoRegion", geo)
        parameters.put("subSamplingX", "1")
        parameters.put("subSamplingY", "1")
        parameters.put("copyMetadata", copymetadata)

        # Create subset using operator
        prod_subset = GPF.createProduct("Subset", parameters, self.product)

        # Update product
        self.product = prod_subset

        # Close dataset
        prod_subset = None
Пример #25
0
def read_terrain_corrected_product(path_to_dim):
    print(path_to_dim)
    dataproduct_r = ProductIO.readProduct(path_to_dim)
    # will the computed band show up?
    for band in dataproduct_r.getBandNames():
        print(band)

    print('WRITING OUT TO GEOTIFF!!')

    sigma0_ortho_bands = ["Sigma0_VH_use_local_inci_angle_from_dem",
                            "Sigma0_VV_use_local_inci_angle_from_dem"]


    convertComputedBandToBand(dataproduct_r.getBand(sigma0_ortho_bands[0]))
    convertComputedBandToBand(dataproduct_r.getBand(sigma0_ortho_bands[1]))

    HashMap = jpy.get_type('java.util.HashMap')
    sub_parameters = HashMap()
    sub_parameters.put('bandNames', ",".join(sigma0_ortho_bands)) # Should eventually look at using a local SRTM 1Sec DEM (instead of auto downloading)

    subset = GPF.createProduct("Subset", sub_parameters, dataproduct_r)

    final_output_name = Path(Path(path_to_dim).parent, "test")

    print('writing out final result')

    # Get a progressMonitor object
    # monitor = self.createProgressMonitor()

    # print('WRITING OUT PRODUCT')

    ProductIO.writeProduct(subset, str(final_output_name), 'BEAM-DIMAP')
def TOPSAR_split_s(product):
    parameters = HashMap()
    parameters.put('subswath', 'IW1')
    parameters.put('selectedPolarisations', 'VV')
    parameters.put('firstBurstIndex', 3)
    parameters.put('lastBurstIndex', 6)
    return GPF.createProduct('TOPSAR-Split', parameters, product)
Пример #27
0
def topsarDeburst(product):

    if debug >= 2:
        print(cyan + "topsarDeburst() : " + bold + green + "Run to SNAP... " +
              endC)

    # Instance de GPF
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    # Def operateur SNAP
    operator = 'TOPSAR-Deburst'

    # Set des parametres
    parameters = HashMap()

    parameters.put("Polarisations", "VV")

    if debug >= 2:
        print(parameters)

    # Get snappy Operators
    result = GPF.createProduct(operator, parameters, product)

    if debug >= 2:
        print(cyan + "topsarDeburst() : " + bold + green + "Done... " + endC)

    return result
Пример #28
0
def topophaseRemoval(product):

    if debug >= 2:
        print(cyan + "topophaseRemoval() : " + bold + green +
              "Run to SNAP... " + endC)

    # Instance de GPF
    GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()

    # Def operateur SNAP
    operator = 'TopoPhaseRemoval'

    # Set des parametres
    parameters = HashMap()

    parameters.put("Orbit Interpolation Degree", 3)
    parameters.put("Digital Elevation Model", "SRTM 1Sec HGT (Auto Download)")
    parameters.put("Tile Extension[%]", 100)
    parameters.put("Output topographic phase band", True)
    parameters.put("Output elevation band", False)

    if debug >= 2:
        print(parameters)

    # Get snappy Operators
    result = GPF.createProduct(operator, parameters, product)

    if debug >= 2:
        print(cyan + "topophaseRemoval() : " + bold + green + "Done... " +
              endC)

    return result
def back_geocoding(product):
    parameters = HashMap()
    parameters.put("Digital Elevation Model", "SRTM 1Sec HGT")
    parameters.put("DEM Resampling Method", "BICUBIC_INTERPOLATION")
    parameters.put("Resampling Type", "BISINC_5_POINT_INTERPOLATION")
    parameters.put("Mask out areas with no elevation", True)
    parameters.put("Output Deramp and Demod Phase", True)
    return GPF.createProduct("Back-Geocoding", parameters, product)
Пример #30
0
def radiometricCalibration(subset):
    parameters = HashMap()
    parameters.put('auxFile', 'Latest Auxiliary File')
    parameters.put('outputSigmaBand', True)
    parameters.put('selectedPolarisations', 'VV')
    calibrate = GPF.createProduct('Calibration', parameters, subset)
    list(calibrate.getBandNames())
    return calibrate
targetBand1.type = 'float32'
targetBand1.expression = '(radiance_10 - radiance_7) / (radiance_10 + radiance_7)'

targetBand2 = BandDescriptor()
targetBand2.name = 'band_2'
targetBand2.type = 'float32'
targetBand2.expression = '(radiance_9 - radiance_6) / (radiance_9 + radiance_6)'

targetBands = jpy.array('org.esa.snap.core.gpf.common.BandMathsOp$BandDescriptor', 2)
targetBands[0] = targetBand1
targetBands[1] = targetBand2

parameters = HashMap()
parameters.put('targetBands', targetBands)

result = GPF.createProduct('BandMaths', parameters, product)

print("Writing...")

ProductIO.writeProduct(result, 'snappy_bmaths_output.dim', 'BEAM-DIMAP')

print("Done.")


"""
   Please note: the next major version of snappy/jpy will be more pythonic in the sense that implicit data type
   conversions are performed. The 'parameters' from above variable could then be given as a Python dict object:

    parameters = {
        'targetBands': [
            {