def test_parse(self): # Given / When train(BEVERAGE_DATASET_PATH, str(self.tmp_file_path), config_path=None) # When with self.fail_if_exception("Failed to parse using CLI script"): parse(str(self.tmp_file_path), "Make me two cups of coffee")
def test_train(self): # Given / When train(BEVERAGE_DATASET_PATH, str(self.tmp_file_path), config_path=None) # Then if not self.tmp_file_path.exists(): self.fail("No trained engine generated") msg = "Failed to create an engine from engine dict." with self.fail_if_exception(msg): SnipsNLUEngine.from_path(self.tmp_file_path)
def test_train(self): # Given / When train(BEVERAGE_DATASET_PATH, str(self.tmp_file_path), config_path=None) # Then if not self.tmp_file_path.exists(): self.fail("No trained engine generated") msg = "Failed to create an engine from engine dict." with self.fail_if_exception(msg): with self.tmp_file_path.open(mode="r", encoding="utf8") as f: trained_engine_dict = json.load(f) SnipsNLUEngine.from_dict(trained_engine_dict)
def test_train(self): # Given / When train(self.beverage_dataset_path, str(self.tmp_file_path), config_path=None, verbose=False) # Then if not self.tmp_file_path.exists(): self.fail("No trained engine generated") msg = "Failed to create an engine from engine dict." with self.fail_if_exception(msg): SnipsNLUEngine.from_path(self.tmp_file_path)