Пример #1
0
def main():
    args = parse_args()
    checkpoint_path = Path(args.checkpoint)
    checkpoint_dir = checkpoint_path.parent
    params_path = checkpoint_dir / 'params.json'
    vocab_dir = checkpoint_dir / 'vocab'

    params = Params.from_file(params_path)
    train_params, model_params = params.pop('train'), params.pop('model')

    tokenizer = WordTokenizer(
        start_tokens=['<s>'],
        end_tokens=['</s>'],
    )
    token_indexer = SingleIdTokenIndexer(lowercase_tokens=True)
    dataset_reader = SnliReader(tokenizer=tokenizer,
                                token_indexers={'tokens': token_indexer})

    valid_dataset = dataset_reader.read(train_params.pop('valid_dataset_path'))
    if not args.test_dataset:
        test_dataset_path = train_params.pop('test_dataset_path')
    else:
        test_dataset_path = args.test_dataset
    test_dataset = dataset_reader.read(test_dataset_path)
    if args.only_label:
        test_dataset = [
            d for d in test_dataset
            if d.fields['label'].label == args.only_label
        ]
    vocab = Vocabulary.from_files(vocab_dir)
    random.shuffle(valid_dataset)

    model_params['token_embedder']['pretrained_file'] = None
    model = SNLIModel(params=model_params, vocab=vocab)
    model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'),
                          strict=False)
    model.to(args.cuda_device)
    model.eval()

    torch.set_grad_enabled(False)

    iterator = BasicIterator(batch_size=32)
    iterator.index_with(vocab)

    for dataset in (valid_dataset, test_dataset):
        generator = iterator(dataset, shuffle=False, num_epochs=1)
        model.get_metrics(reset=True)
        for batch in tqdm(generator):
            batch = move_to_device(batch, cuda_device=args.cuda_device)
            model(premise=batch['premise'],
                  hypothesis=batch['hypothesis'],
                  label=batch['label'])
        metrics = model.get_metrics()
        pprint(metrics)
Пример #2
0
def main():
    args = parse_args()
    checkpoint_path = Path(args.checkpoint)
    checkpoint_dir = checkpoint_path.parent
    params_path = checkpoint_dir / 'params.json'
    vocab_dir = checkpoint_dir / 'vocab'

    params = Params.from_file(params_path)
    train_params, model_params = params.pop('train'), params.pop('model')

    tokenizer = WordTokenizer(start_tokens=['<s>'], end_tokens=['</s>'],)
    token_indexer = SingleIdTokenIndexer(lowercase_tokens=True)
    dataset_reader = SnliReader(
        tokenizer=tokenizer, token_indexers={'tokens': token_indexer})

    valid_dataset = dataset_reader.read(
        train_params.pop('valid_dataset_path'))
    vocab = Vocabulary.from_files(vocab_dir)

    model_params['token_embedder']['pretrained_file'] = None
    model = SNLIModel(params=model_params, vocab=vocab)
    model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'),
                          strict=False)
    model.to(args.device)
    model.eval()

    iterator = BasicIterator(batch_size=args.batch_size)
    iterator.index_with(vocab)
    generator = iterator(valid_dataset, num_epochs=1, shuffle=False)
    label_index_to_token = vocab.get_index_to_token_vocabulary('labels')

    out_file = open(args.out, 'w')

    for batch in tqdm(generator):
        premise_tokens = batch['premise']['tokens']
        enc_embs = model.embed(premise_tokens.to(args.device))
        enc_mask = get_text_field_mask(batch['premise']).to(args.device)
        enc_hidden = model.encode(inputs=enc_embs, mask=enc_mask,
                                  drop_start_token=True)
        code, kld = model.sample_code_and_compute_kld(enc_hidden)
        pre_text = model.convert_to_readable_text(premise_tokens[:, 1:])
        label_tensor = batch['label'].to(args.device)
        generated = model.generate(
            code=code, label=label_tensor, max_length=25,
            beam_size=10, lp_alpha=args.lp_alpha)
        text = model.convert_to_readable_text(generated[:, 0])
        for pre_text_b, text_b, label_index_b in zip(pre_text, text, label_tensor):
            obj = {'sentence1': ' '.join(pre_text_b), 'sentence2': ' '.join(text_b),
                   'gold_label': label_index_to_token[label_index_b.item()]}
            out_file.write(json.dumps(obj))
            out_file.write('\n')
Пример #3
0
def evaluate(args):
    with open(args.data, 'rb') as f:
        test_dataset: SNLIDataset = pickle.load(f)
    word_vocab = test_dataset.word_vocab
    label_vocab = test_dataset.label_vocab
    model = SNLIModel(num_classes=len(label_vocab),
                      num_words=len(word_vocab),
                      word_dim=args.word_dim,
                      hidden_dim=args.hidden_dim,
                      clf_hidden_dim=args.clf_hidden_dim,
                      clf_num_layers=args.clf_num_layers,
                      use_leaf_rnn=args.leaf_rnn,
                      intra_attention=args.intra_attention,
                      use_batchnorm=args.batchnorm,
                      dropout_prob=args.dropout,
                      bidirectional=args.bidirectional)
    num_params = sum(np.prod(p.size()) for p in model.parameters())
    num_embedding_params = np.prod(model.word_embedding.weight.size())
    print(f'# of parameters: {num_params}')
    print(f'# of word embedding parameters: {num_embedding_params}')
    print(f'# of parameters (excluding word embeddings): '
          f'{num_params - num_embedding_params}')
    model.load_state_dict(torch.load(args.model, map_location='cpu'))
    model.eval()
    model.to(args.device)
    torch.set_grad_enabled(False)
    test_data_loader = DataLoader(dataset=test_dataset,
                                  batch_size=args.batch_size,
                                  collate_fn=test_dataset.collate)
    num_correct = 0
    num_data = len(test_dataset)
    for batch in test_data_loader:
        pre = batch['pre'].to(args.device)
        hyp = batch['hyp'].to(args.device)
        pre_length = batch['pre_length'].to(args.device)
        hyp_length = batch['hyp_length'].to(args.device)
        label = batch['label'].to(args.device)
        logits = model(pre=pre,
                       pre_length=pre_length,
                       hyp=hyp,
                       hyp_length=hyp_length)
        label_pred = logits.max(1)[1]
        num_correct_batch = torch.eq(label, label_pred).long().sum()
        num_correct_batch = num_correct_batch.item()
        num_correct += num_correct_batch
    print(f'# data: {num_data}')
    print(f'# correct: {num_correct}')
    print(f'Accuracy: {num_correct / num_data:.4f}')
Пример #4
0
def train(args):
    with open(args.train_data, 'rb') as f:
        train_dataset: SNLIDataset = pickle.load(f)
    with open(args.valid_data, 'rb') as f:
        valid_dataset: SNLIDataset = pickle.load(f)

    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=2,
                              collate_fn=train_dataset.collate,
                              pin_memory=True)
    valid_loader = DataLoader(dataset=valid_dataset,
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=2,
                              collate_fn=valid_dataset.collate,
                              pin_memory=True)
    word_vocab = train_dataset.word_vocab
    label_vocab = train_dataset.label_vocab

    model = SNLIModel(num_classes=len(label_vocab),
                      num_words=len(word_vocab),
                      word_dim=args.word_dim,
                      hidden_dim=args.hidden_dim,
                      clf_hidden_dim=args.clf_hidden_dim,
                      clf_num_layers=args.clf_num_layers,
                      use_leaf_rnn=args.leaf_rnn,
                      use_batchnorm=args.batchnorm,
                      intra_attention=args.intra_attention,
                      dropout_prob=args.dropout,
                      bidirectional=args.bidirectional)
    if args.glove:
        logging.info('Loading GloVe pretrained vectors...')
        glove_weight = load_glove(
            path=args.glove,
            vocab=word_vocab,
            init_weight=model.word_embedding.weight.data.numpy())
        glove_weight[word_vocab.pad_id] = 0
        model.word_embedding.weight.data.set_(torch.FloatTensor(glove_weight))
    if args.fix_word_embedding:
        logging.info('Will not update word embeddings')
        model.word_embedding.weight.requires_grad = False
    model.to(args.device)
    logging.info(f'Using device {args.device}')
    if args.optimizer == 'adam':
        optimizer_class = optim.Adam
    elif args.optimizer == 'adagrad':
        optimizer_class = optim.Adagrad
    elif args.optimizer == 'adadelta':
        optimizer_class = optim.Adadelta
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
                                               mode='max',
                                               factor=0.5,
                                               patience=10,
                                               verbose=True)
    criterion = nn.CrossEntropyLoss()

    train_summary_writer = SummaryWriter(
        log_dir=os.path.join(args.save_dir, 'log', 'train'))
    valid_summary_writer = SummaryWriter(
        log_dir=os.path.join(args.save_dir, 'log', 'valid'))

    def run_iter(batch, is_training):
        model.train(is_training)
        pre = batch['pre'].to(args.device)
        hyp = batch['hyp'].to(args.device)
        pre_length = batch['pre_length'].to(args.device)
        hyp_length = batch['hyp_length'].to(args.device)
        label = batch['label'].to(args.device)
        logits = model(pre=pre,
                       pre_length=pre_length,
                       hyp=hyp,
                       hyp_length=hyp_length)
        label_pred = logits.max(1)[1]
        accuracy = torch.eq(label, label_pred).float().mean()
        loss = criterion(input=logits, target=label)
        if is_training:
            optimizer.zero_grad()
            loss.backward()
            clip_grad_norm_(parameters=params, max_norm=5)
            optimizer.step()
        return loss, accuracy

    def add_scalar_summary(summary_writer, name, value, step):
        if torch.is_tensor(value):
            value = value.item()
        summary_writer.add_scalar(tag=name,
                                  scalar_value=value,
                                  global_step=step)

    num_train_batches = len(train_loader)
    validate_every = num_train_batches // 10
    best_vaild_accuacy = 0
    iter_count = 0
    for epoch_num in range(args.max_epoch):
        logging.info(f'Epoch {epoch_num}: start')
        for batch_iter, train_batch in enumerate(train_loader):
            if iter_count % args.anneal_temperature_every == 0:
                rate = args.anneal_temperature_rate
                new_temperature = max([0.5, math.exp(-rate * iter_count)])
                model.encoder.gumbel_temperature = new_temperature
                logging.info(
                    f'Iter #{iter_count}: '
                    f'Set Gumbel temperature to {new_temperature:.4f}')
            train_loss, train_accuracy = run_iter(batch=train_batch,
                                                  is_training=True)
            iter_count += 1
            add_scalar_summary(summary_writer=train_summary_writer,
                               name='loss',
                               value=train_loss,
                               step=iter_count)
            add_scalar_summary(summary_writer=train_summary_writer,
                               name='accuracy',
                               value=train_accuracy,
                               step=iter_count)

            if (batch_iter + 1) % validate_every == 0:
                torch.set_grad_enabled(False)
                valid_loss_sum = valid_accuracy_sum = 0
                num_valid_batches = len(valid_loader)
                for valid_batch in valid_loader:
                    valid_loss, valid_accuracy = run_iter(batch=valid_batch,
                                                          is_training=False)
                    valid_loss_sum += valid_loss.item()
                    valid_accuracy_sum += valid_accuracy.item()
                torch.set_grad_enabled(True)
                valid_loss = valid_loss_sum / num_valid_batches
                valid_accuracy = valid_accuracy_sum / num_valid_batches
                scheduler.step(valid_accuracy)
                add_scalar_summary(summary_writer=valid_summary_writer,
                                   name='loss',
                                   value=valid_loss,
                                   step=iter_count)
                add_scalar_summary(summary_writer=valid_summary_writer,
                                   name='accuracy',
                                   value=valid_accuracy,
                                   step=iter_count)
                progress = epoch_num + batch_iter / num_train_batches
                logging.info(f'Epoch {progress:.2f}: '
                             f'valid loss = {valid_loss:.4f}, '
                             f'valid accuracy = {valid_accuracy:.4f}')
                if valid_accuracy > best_vaild_accuacy:
                    best_vaild_accuacy = valid_accuracy
                    model_filename = (f'model-{progress:.2f}'
                                      f'-{valid_loss:.4f}'
                                      f'-{valid_accuracy:.4f}.pkl')
                    model_path = os.path.join(args.save_dir, model_filename)
                    torch.save(model.state_dict(), model_path)
                    print(f'Saved the new best model to {model_path}')