Пример #1
0
    # input image dimensions
    img_rows, img_cols = 28, 28
    chnls = 1

    (x_train, y_train), (x_test, y_test) = dataset.load_data()
    x_train = x_train.reshape(x_train.shape[0], chnls, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], chnls, img_rows, img_cols)
    y_train = to_categorical(y_train, nb_classes)
    y_test = to_categorical(y_test, nb_classes)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    y_train = y_train.astype('float32')
    y_test = y_test.astype('float32')
    x_train /= 255
    x_test /= 255

    print("Training...")
    for epoch in range(nb_epoch):
        print("Epoch: {}".format(epoch))
        print("Training loss: {}".format(
            train_epoch(x_train, y_train, train_func, batch_size)))
        x_train, y_train = shuffle(x_train, y_train)

        val_err, val_loss = test_epoch(x_test, y_test, test_func, batch_size)
        print("Validation accuracy: {}".format((1 - val_err) * 100))

    score = test_func(x_test, y_test)

    params = lasagne.layers.get_all_param_values(model)
    save_parameters(params, '{:2.2f}.h5'.format((1 - score[1]) * 100))
Пример #2
0
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    print('Building the CNN...')

    cnn, train_fn, val_fn = build_network()

    print('Training...')

    binary_net.train(train_fn, val_fn, cnn, batch_size, LR_start, LR_decay,
                     num_epochs, train_set.X, train_set.y, valid_set.X,
                     valid_set.y, test_set.X, test_set.y,
                     shuffle_parts=shuffle_parts)

    W = lasagne.layers.get_all_layers(cnn)[1].W.get_value()

    import matplotlib.pyplot as plt
    plt.hist(W.flatten())
    plt.title("Weight distribution of first hidden convolution layer")

    # Dump the network weights to a file
    filepath = 'binarynet.h5'
    params = lasagne.layers.get_all_param_values(cnn)
    save_parameters(params, filepath)
Пример #3
0
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    print('Building the CNN...')

    model, train_func, val_func = build_network()

    print('Training...')

    binary_connect.train(train_func, val_func, batch_size, LR_start, LR_decay,
                         num_epochs, train_set.X, train_set.y, valid_set.X,
                         valid_set.y, test_set.X, test_set.y)

    W = lasagne.layers.get_all_layers(model)[1].W.get_value()

    plt.hist(W.flatten())
    plt.title("Weight distribution of first hidden convolution layer")

    # Dump the network weights to a file
    filepath = 'binaryconnect'
    parameters = lasagne.layers.get_all_param_values(model)
    save_parameters(parameters, filepath + '.h5')
    params_b = lasagne.layers.get_all_params(model, binary=True)
    save_parameters(parameters, filepath + '_binary.h5')