Пример #1
0
def test_gamma():

    source = path('gamma_dalai_lama_gray.jpg')
    dalai_lama = snowy.load(source)
    snowy.show(dalai_lama)

    small = snowy.resize(dalai_lama, height=32)
    snowy.save(small, path('small_dalai_lama.png'))
    snowy.show(small)
Пример #2
0
def test_normals():
    isle = create_island(10)
    height, width, nchan = isle.shape

    occlusion = np.empty([height, width, 1])
    seconds = timeit.timeit(
        lambda: np.copyto(occlusion, sn.compute_skylight(isle)), number=1)
    print(f'\ncompute_skylight took {seconds} seconds')

    normals = np.empty([height - 1, width - 1, 3])
    seconds = timeit.timeit(
        lambda: np.copyto(normals, sn.compute_normals(isle)), number=1)
    print(f'\ncompute_normals took {seconds} seconds')

    normals = sn.resize(normals, 750, 512)

    # Flatten the normals according to landmass versus sea.
    normals += np.float64([0, 0, 100]) * np.where(isle < 0.0, 1.0, 0.005)
    normals /= sn.reshape(np.sqrt(np.sum(normals * normals, 2)))

    # Compute the lambertian diffuse factor
    lightdir = np.float64([0.2, -0.2, 1])
    lightdir /= np.linalg.norm(lightdir)
    df = np.clip(np.sum(normals * lightdir, 2), 0, 1)
    df = sn.reshape(df)
    df *= occlusion

    # Apply color LUT
    gradient_image = sn.resize(sn.load(path('terrain.png')),
                               width=1024)[:, :, :3]

    def applyColorGradient(elevation):
        xvals = np.arange(1024)
        yvals = gradient_image[0]
        apply_lut = interpolate.interp1d(xvals, yvals, axis=0)
        el = np.clip(1023 * elevation, 0, 1023)
        return apply_lut(sn.unshape(el))

    albedo = applyColorGradient(isle * 0.5 + 0.5)
    albedo *= df

    # Visualize the lighting layers
    normals = 0.5 * (normals + 1.0)
    isle = np.dstack([isle, isle, isle])
    occlusion = np.dstack([occlusion, occlusion, occlusion])
    df = np.dstack([df, df, df])
    island_strip = sn.resize(sn.hstack([occlusion, normals, df, albedo]),
                             height=256)
    sn.save(island_strip, 'docs/island_strip.png')
    sn.show(island_strip)
Пример #3
0
def test_range():

    source = path('../docs/ground.jpg')
    ground = snowy.load(source)
    assert np.amin(ground) >= 0 and np.amax(ground) <= 1

    with tempfile.NamedTemporaryFile() as fp:
        target = fp.name + '.png'
        snowy.save(ground, target)
        show_filename(target)

    show_filename(source)
    show_array(ground)

    blurred = snowy.blur(ground, radius=10)
    snowy.show(blurred)
Пример #4
0
mask = warped < 0.1

print("Computing the distance field.")
elevation = snowy.generate_sdf(mask)
elevation /= np.amax(elevation)

print("Computing ambient occlusion.")
occlusion = snowy.compute_skylight(elevation)
occlusion = 0.25 + 0.75 * occlusion

print("Generating normal map.")
normals = snowy.resize(snowy.compute_normals(elevation), width, height)

# Save the landmass portion of the elevation data.
landmass = elevation * np.where(elevation < 0.0, 0.0, 1.0)
snowy.save(trim(landmass), "landmass.png")

# Flatten the normals according to landmass versus sea.
normals += np.float64([0, 0, 1000]) * np.where(elevation < 0.0, 1.0, 0.01)
normals /= snowy.reshape(np.sqrt(np.sum(normals * normals, 2)))

print("Applying diffuse lighting.")
lightdir = np.float64([0.5, -0.5, 1])
lightdir /= np.linalg.norm(lightdir)
lambert = np.sum(normals * lightdir, 2)
lighting = snowy.reshape(lambert) * occlusion

print("Applying color gradient.")
yvals = snowy.load("gradient.png")[0, :, :3]
water_color = np.copy(yvals[126])
yvals[0:128] = water_color
Пример #5
0
def create_wrap_figures():
    ground = snowy.load(qualify('ground.jpg'))
    hground = np.hstack([ground, ground])
    ground2x2 = np.vstack([hground, hground])
    snowy.save(ground2x2, qualify('ground2x2.jpg'))

    ground = snowy.blur(ground, radius=14, filter=snowy.LANCZOS)
    snowy.save(ground, qualify('blurry_ground_bad.jpg'))
    hground = np.hstack([ground, ground])
    ground2x2 = np.vstack([hground, hground])
    snowy.save(ground2x2, qualify('blurry_ground2x2_bad.jpg'))

    ground = snowy.load(qualify('ground.jpg'))

    ground = snowy.blur(ground,
                        radius=14,
                        wrapx=True,
                        wrapy=True,
                        filter=snowy.LANCZOS)
    snowy.save(ground, qualify('blurry_ground_good.jpg'))
    hground = np.hstack([ground, ground])
    ground2x2 = np.vstack([hground, hground])
    snowy.save(ground2x2, qualify('blurry_ground2x2_good.jpg'))

    n = snowy.generate_noise(256, 512, frequency=4, seed=42, wrapx=False)
    n = 0.5 + 0.5 * np.sign(n) - n
    n = np.hstack([n, n])
    n = snowy.add_border(n, width=4)
    snowy.save(n, qualify('tiled_noise_bad.png'))

    n = snowy.generate_noise(256, 512, frequency=4, seed=42, wrapx=True)
    n = 0.5 + 0.5 * np.sign(n) - n
    n = np.hstack([n, n])
    n = snowy.add_border(n, width=4)
    snowy.save(n, qualify('tiled_noise_good.png'))

    c0 = create_circle(400, 200, 0.3)
    c1 = create_circle(400, 200, 0.08, 0.8, 0.8)
    circles = np.clip(c0 + c1, 0, 1)
    mask = circles != 0.0
    sdf = snowy.unitize(snowy.generate_sdf(mask, wrapx=True, wrapy=True))
    sdf = np.hstack([sdf, sdf, sdf, sdf])
    sdf = snowy.resize(np.vstack([sdf, sdf]), width=512)
    sdf = snowy.add_border(sdf)
    snowy.save(sdf, qualify('tiled_sdf_good.png'))

    sdf = snowy.unitize(snowy.generate_sdf(mask, wrapx=False, wrapy=False))
    sdf = np.hstack([sdf, sdf, sdf, sdf])
    sdf = snowy.resize(np.vstack([sdf, sdf]), width=512)
    sdf = snowy.add_border(sdf)
    snowy.save(sdf, qualify('tiled_sdf_bad.png'))
Пример #6
0

generate_page(qualify('index.md'), qualify('index.html'), False)
generate_page(qualify('reference.md'), qualify('reference.html'), True)

# Test rotations and flips

gibbons = snowy.load(qualify('gibbons.jpg'))
gibbons = snowy.resize(gibbons, width=gibbons.shape[1] // 5)
gibbons90 = snowy.rotate(gibbons, 90)
gibbons180 = snowy.rotate(gibbons, 180)
gibbons270 = snowy.rotate(gibbons, 270)
hflipped = snowy.hflip(gibbons)
vflipped = snowy.vflip(gibbons)
snowy.save(
    snowy.hstack([gibbons, gibbons180, vflipped],
                 border_width=4,
                 border_value=[0.5, 0, 0]), qualify("xforms.png"))

# Test noise generation

n = snowy.generate_noise(100, 100, frequency=4, seed=42, wrapx=True)
n = np.hstack([n, n])
n = 0.5 + 0.5 * n
snowy.show(n)
snowy.save(n, qualify('noise.png'))

# First try minifying grayscale

gibbons = snowy.load(qualify('snowy.jpg'))
gibbons = np.swapaxes(gibbons, 0, 2)
gibbons = np.swapaxes(gibbons[0], 0, 1)
Пример #7
0
import snowy

source = snowy.open('poodle.png')
source = snowy.resize(source, height=200)
blurry = snowy.blur(source, radius=4.0)
snowy.save(snowy.hstack([source, blurry]), 'diptych.png')

# This snippet does a resize, then a blur, then horizontally concatenates the two images

parrot = snowy.load('parrot.png')
height, width = parrot.shape[:2]
nearest = snowy.resize(parrot, width * 6, filter=snowy.NEAREST) 
mitchell = snowy.resize(parrot, width * 6)
snowy.show(snowy.hstack([nearest, mitchell]))

#  This snippet first magnifies an image using a nearest-neighbor filter, then using the default Mitchell filter.

parrot = snowy.load('parrot.png')
height, width = parrot.shape[:2]
nearest = snowy.resize(parrot, width * 6, filter=snowy.NEAREST) 
mitchell = snowy.resize(parrot, width * 6)
snowy.show(snowy.hstack([nearest, mitchell]))