def step03(): assert isfile( cfg.dtadir+"/train_trn_.tsv.gz" ); with FeatureDiscretizer( cfg.dtadir+"/fdp.pickle", "w" ) as fdp: with FeatureDiscretizer( cfg.dtadir+"/fdq.pickle", "w" ) as fdq: with KPCAContinuousFrontend( cfg.dtadir+"/kpcacfe.pickle", "r" ) as kpcacfe: with HomebrewContinuousFrontend( cfg.dtadir+"/hbcfe.pickle", "r" ) as hbcfe: with CategoricalFrontend( cfg.dtadir+"/cfe.pickle", "r" ) as cfe: with BinaryFrontend( cfg.dtadir+"/bfe.pickle", "r" ) as bfe: rows = da_read( cfg.dtadir+"/train_trn_.tsv.gz" ); i = 0; for ( id_, y, c, b, x ) in rows: i += 1; # print( i ); # if i >= 100: # break; c = cfe( c ); b = bfe( b ); xp = hbcfe( x ); xq = kpcacfe( x ); is_enough = []; is_enough.append( fdp.train( xp ) ); is_enough.append( fdq.train( xq ) ); if all( is_enough ): break;
def step02(): assert isfile( cfg.dtadir+"/train_trn_.tsv.gz" ); with KPCAContinuousFrontend( cfg.dtadir+"/kpcacfe.pickle", "w" ) as kpcacfe: with HomebrewContinuousFrontend( cfg.dtadir+"/hbcfe.pickle", "w" ) as hbcfe: with CategoricalFrontend( cfg.dtadir+"/cfe.pickle", "w" ) as cfe: with BinaryFrontend( cfg.dtadir+"/bfe.pickle", "w" ) as bfe: rows = da_read( cfg.dtadir+"/train_trn_.tsv.gz" ); i = 0; for ( id_, y, c, b, x ) in rows: i += 1; # print( i ); # if i >= 100: # break; is_enough = []; is_enough.append( bfe.train( b ) ); is_enough.append( cfe.train( [c] ) ); is_enough.append( hbcfe.train( x ) ); is_enough.append( kpcacfe.train( x ) ); if all( is_enough ): break;
def step05( modelf ): assert isfile( cfg.dtadir+"/train_trn_.tsv.gz" ); with FeatureSelector( cfg.dtadir+"/fs.pickle", "r" ) as fs: with FeatureDiscretizer( cfg.dtadir+"/fdp.pickle", "r" ) as fdp: with FeatureDiscretizer( cfg.dtadir+"/fdq.pickle", "r" ) as fdq: with KPCAContinuousFrontend( cfg.dtadir+"/kpcacfe.pickle", "r" ) as kpcacfe: with HomebrewContinuousFrontend( cfg.dtadir+"/hbcfe.pickle", "r" ) as hbcfe: with CategoricalFrontend( cfg.dtadir+"/cfe.pickle", "r" ) as cfe: with BinaryFrontend( cfg.dtadir+"/bfe.pickle", "r" ) as bfe: if modelf == "mdlp.kch": mdl_ \ = BKNNModel( cfg.dtadir+"/"+modelf, "w", cfe, bfe, hbcfe, fdp, fs, 7 ); elif modelf == "mdlq.kch": fs.bypass_x = True; mdl_ \ = BKNNModel( cfg.dtadir+"/"+modelf, "w", cfe, bfe, kpcacfe, fdq, fs, 7 ); with mdl_ as mdl: rows = da_read( cfg.dtadir+"/train_trn_.tsv.gz" ); i = 0; for ( id_, y, c, b, x ) in rows: i += 1; #print( i ); #if i > 10000: # break; if mdl.train( ( y, c, b, x ) ): break;