def edit(name, value, type='auto', description=None, editor='visual', world=None, frame=None): """Launches an editor for the given value. Returns a pair (save,result) where save indicates what the user wanted to do with the edited value and result is the edited value.""" if name == None and type == 'auto': raise RuntimeError( "Cannot do an anonymous edit without the 'type' argument specified" ) if name == None: name = 'Anonymous' if type == 'auto': type = nameToType(name) if not _PyQtAvailable and editor == 'visual': print "PyQt is not available, defaulting to console editor" editor = 'console' if isinstance(world, str): #a single argument, e.g., a robot file global _editTemporaryWorlds if world not in _editTemporaryWorlds: _editTemporaryWorlds[world] = WorldModel() if not _editTemporaryWorlds[world].readFile(world): raise RuntimeError("Error loading world file " + world) world = _editTemporaryWorlds[world] if isinstance(frame, str): try: oframe = world.rigidObject(frame) frame = oframe except RuntimeError: try: oframe = world.robot(0).getLink(frame) frame = oframe except RuntimeError: try: oframe = world.terrain(frame) frame = oframe except RuntimeError: raise RuntimeError('Named frame "' + frame + '" is not a valid frame') if value == None: if type == 'Config': if world == None: raise RuntimeError( "Cannot visually edit a Config resource without a world") value = world.robot(0).getConfig() elif type == 'Configs': raise RuntimeError( "Cannot visually edit a Configs resource without a world") value = [world.robot(0).getConfig()] elif type == 'IKGoal': value = IKObjective() elif type == 'Vector3' or type == 'Point': value = [0, 0, 0] elif type == 'Rotation': value = so3.identity() elif type == 'RigidTransform': value = se3.identity() else: raise RuntimeError("Don't know how to edit objects of type " + type) if editor == 'console': return console_edit(name, value, type, description, world, frame) elif editor == 'visual': if type == 'Config': return _launch(_ConfigVisualEditor(name, value, description, world)) elif type == 'Configs': return _launch( _ConfigsVisualEditor(name, value, description, world)) elif type == 'Vector3' or type == 'Point': if isinstance(frame, (RigidObjectModel, RobotModelLink)): frame = frame.getTransform() return _launch( _PointVisualEditor(name, value, description, world, frame)) elif type == 'Rotation': if isinstance(frame, (RigidObjectModel, RobotModelLink)): frame = frame.getTransform() return _launch( _RotationVisualEditor(name, value, description, world, frame)) elif type == 'RigidTransform': if isinstance(frame, RigidObjectModel): return _launch( _ObjectTransformVisualEditor(name, value, description, world, frame)) if isinstance(frame, RobotModelLink): frame = frame.getTransform() return _launch( _RigidTransformVisualEditor(name, value, description, world, frame)) else: raise RuntimeError("Don't know how to edit objects of type " + type) else: raise ValueError( "Invalid value for argument 'editor', must be either 'visual' or 'console'" )
def __init__(self): Context.__init__(self) self.type = Type('V',9) Rvar = Variable("R",self.type) Rsymb = VariableExpression(Rvar) R1 = Variable("R1",self.type) R2 = Variable("R2",self.type) V3type = Type('V',3) q = Variable('q',Type('V',4)) pointvar = Variable("point",V3type) pointsymb = VariableExpression(pointvar) self.identity = self.declare(expr(so3.identity()),"identity",[]) self.identity.description = "The identity rotation" self.matrix = self.declare(expr(so3.matrix(Rsymb)),"matrix",["R"]) self.matrix.addSimplifier(['so3.identity'],(lambda R:eye(3)),pre=True) self.matrix.description = "Converts to a 3x3 matrix" M = Variable("M",Type('M',(3,3))) self.from_matrix = self.declare(flatten(transpose(M)),"from_matrix",['M']) self.from_matrix.description = "Converts from a 3x3 matrix" self.from_matrix.autoSetJacobians() self.inv = self.declare(expr(so3.inv(Rsymb)),"inv",["R"]) self.inv.description = "Inverts a rotation" self.inv.autoSetJacobians() self.inv.properties['inverse'] = weakref.proxy(self.inv) self.inv.addSimplifier(['so3.identity'],lambda R:R) self.mul = self.declare(so3.mul,"mul") self.mul.description = "Inverts a rotation" self.mul.setDeriv(0,lambda R1,R2,dR1:self.mul(dR1,R2),asExpr=True) self.mul.setDeriv(1,lambda R1,R2,dR2:self.mul(R1,dR2),asExpr=True) self.mul.addSimplifier(['so3.identity',None],(lambda R1,R2:R2),pre=True) self.mul.addSimplifier([None,'so3.identity'],(lambda R1,R2:R1),pre=True) self.mul.properties['associative'] = True self.apply = self.declare(expr(so3.apply(Rsymb,pointsymb)),"apply",["R","point"]) self.apply.addSimplifier(['so3.identity',None],(lambda R,point:point),pre=True) self.apply.addSimplifier([None,'zero'],(lambda R,point:point),pre=True) self.apply.autoSetJacobians() self.rotation = self.declare(so3.rotation,"rotation") self.from_rpy = self.declare(so3.from_rpy,"from_rpy") self.rpy = self.declare(so3.rpy,"rpy") self.from_quaternion = self.declare(expr(so3.from_quaternion([q[0],q[1],q[2],q[3]])),"from_quaternion",["q"]) self.quaternion = self.declare(so3.quaternion,"quaternion") self.from_rotation_vector = self.declare(so3.from_rotation_vector,"from_rotation_vector") self.rotation_vector = self.declare(so3.rotation_vector,"rotation_vector") self.axis = self.declare(unit(self.rotation_vector(Rvar)),"rotation",["R"]) self.angle = self.declare(so3.angle,"angle") self.error = self.declare(so3.error,"error") self.distance = self.declare(self.angle(self.mul(self.inv(R1),R2)),"distance",['R1','R2']) self.distance.properties['nonnegative'] = True Rm = self.matrix(Rsymb) self.eq_constraint = self.declare(dot(Rm.T,Rm),'eq_constraint',['R']) self.quaternion_constraint = self.declare(norm2(q)-1,'quaternion_constraint',['q']) self.identity.returnType = self.type self.inv.returnType = self.type self.inv.argTypes = [self.type] self.mul.returnType = self.type self.mul.argTypes = [self.type,self.type] self.apply.returnType = V3type self.apply.argTypes = [self.type,V3type] self.rotation.returnType = self.type self.rotation.argTypes = [V3type,Numeric] self.rotation.setDeriv(1,lambda axis,angle:so3.cross_product(axis)) self.axis.returnType = V3type self.axis.argTypes = [self.type] self.angle.returnType = V3type self.angle.argTypes = [self.type] def angle_deriv(R,dR): cosangle = (R[0]+R[4]+R[8]-1)*0.5 angle = arccos(cosangle) #dangle / dR[0] = -1.0/sqrt(1-cosangle**2) * dcosangle/dR[0] dacos = -1.0/sqrt(1-cosangle**2) return expr([0.5*dacos*dR[0],0,0,0,0.5*dacos*dR[4],0,0,0,0.5*dacos*dR[8]]) self.angle.setDeriv(0,angle_deriv,asExpr=True) self.error.returnType = V3type self.error.argTypes = [self.type,self.type] self.distance.returnType = Numeric self.distance.argTypes = [self.type,self.type] self.distance.autoSetJacobians() self.from_matrix.returnType = self.type self.from_matrix.argTypes = [M.type] self.from_rpy.returnType = self.type self.from_rpy.argTypes = [V3type] self.from_quaternion.returnType = self.type self.from_quaternion.argTypes = [Type('V',4)] self.from_rotation_vector.returnType = self.type self.from_rotation_vector.argTypes = [V3type] self.matrix.returnType = self.from_matrix.argTypes[0] self.matrix.argTypes = [self.from_matrix.returnType] self.rpy.returnType = self.from_rpy.argTypes[0] self.rpy.argTypes = [self.from_rpy.returnType] self.quaternion.returnType = self.from_quaternion.argTypes[0] self.quaternion.argTypes = [self.from_quaternion.returnType] self.rotation_vector.returnType = self.from_rotation_vector.argTypes[0] self.rotation_vector.argTypes = [self.from_rotation_vector.returnType]
def draw(self,world=None): """Draws the specified item in the specified world. If name is given and text_hidden != False, then the name of the item is shown.""" if self.hidden: return item = self.item name = self.name #set appearance if not self.useDefaultAppearance and hasattr(item,'appearance'): if not hasattr(self,'oldAppearance'): self.oldAppearance = item.appearance().clone() if self.customAppearance != None: print "Changing appearance of",name item.appearance().set(self.customAppearance) elif "color" in self.attributes: print "Changing color of",name item.appearance().setColor(*self.attributes["color"]) if hasattr(item,'drawGL'): item.drawGL() elif len(self.subAppearances)!=0: for n,app in self.subAppearances.iteritems(): app.widget = self.widget app.draw(world) elif isinstance(item,coordinates.Point): def drawRaw(): glDisable(GL_DEPTH_TEST) glDisable(GL_LIGHTING) glEnable(GL_POINT_SMOOTH) glPointSize(self.attributes.get("size",5.0)) glColor4f(*self.attributes.get("color",[0,0,0,1])) glBegin(GL_POINTS) glVertex3f(0,0,0) glEnd() glEnable(GL_DEPTH_TEST) #write name self.displayCache[0].draw(drawRaw,[so3.identity(),item.worldCoordinates()]) if name != None: self.drawText(name,vectorops.add(item.worldCoordinates(),[0,0,-0.05])) elif isinstance(item,coordinates.Direction): def drawRaw(): glDisable(GL_LIGHTING) glDisable(GL_DEPTH_TEST) L = self.attributes.get("length",0.15) source = [0,0,0] glColor4f(*self.attributes.get("color",[0,1,1,1])) glBegin(GL_LINES) glVertex3f(*source) glVertex3f(*vectorops.mul(item.localCoordinates(),L)) glEnd() glEnable(GL_DEPTH_TEST) #write name self.displayCache[0].draw(drawRaw,item.frame().worldCoordinates(),parameters = item.localCoordinates()) if name != None: self.drawText(name,vectorops.add(vectorops.add(item.frame().worldCoordinates()[1],item.worldCoordinates()),[0,0,-0.05])) elif isinstance(item,coordinates.Frame): t = item.worldCoordinates() if item.parent() != None: tp = item.parent().worldCoordinates() else: tp = se3.identity() tlocal = item.relativeCoordinates() def drawRaw(): glDisable(GL_DEPTH_TEST) glDisable(GL_LIGHTING) glLineWidth(2.0) gldraw.xform_widget(tlocal,self.attributes.get("length",0.1),self.attributes.get("width",0.01)) glLineWidth(1.0) #draw curve between frame and parent if item.parent() != None: d = vectorops.norm(tlocal[1]) vlen = d*0.5 v1 = so3.apply(tlocal[0],[-vlen]*3) v2 = [vlen]*3 #glEnable(GL_BLEND) #glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA) #glColor4f(1,1,0,0.5) glColor3f(1,1,0) gldraw.hermite_curve(tlocal[1],v1,[0,0,0],v2,0.03) #glDisable(GL_BLEND) glEnable(GL_DEPTH_TEST) #For some reason, cached drawing is causing OpenGL problems #when the frame is rapidly changing #self.displayCache[0].draw(drawRaw,transform=tp, parameters = tlocal) glPushMatrix() glMultMatrixf(sum(zip(*se3.homogeneous(tp)),())) drawRaw() glPopMatrix() #write name if name != None: self.drawText(name,se3.apply(t,[-0.05]*3)) elif isinstance(item,coordinates.Transform): #draw curve between frames t1 = item.source().worldCoordinates() if item.destination() != None: t2 = item.destination().worldCoordinates() else: t2 = se3.identity() d = vectorops.distance(t1[1],t2[1]) vlen = d*0.5 v1 = so3.apply(t1[0],[-vlen]*3) v2 = so3.apply(t2[0],[vlen]*3) def drawRaw(): glDisable(GL_DEPTH_TEST) glDisable(GL_LIGHTING) glColor3f(1,1,1) gldraw.hermite_curve(t1[1],v1,t2[1],v2,0.03) glEnable(GL_DEPTH_TEST) #write name at curve self.displayCache[0].draw(drawRaw,transform=None,parameters = (t1,t2)) if name != None: self.drawText(name,spline.hermite_eval(t1[1],v1,t2[1],v2,0.5)) else: types = resource.objectToTypes(item,world) if isinstance(types,(list,tuple)): #ambiguous, still need to figure out what to draw validtypes = [] for t in types: if t == 'Config': if world != None and len(t) == world.robot(0).numLinks(): validtypes.append(t) elif t=='Vector3': validtypes.append(t) elif t=='RigidTransform': validtypes.append(t) if len(validtypes) > 1: print "Unable to draw item of ambiguous types",validtypes return if len(validtypes) == 0: print "Unable to draw any of types",types return types = validtypes[0] if types == 'Config': if world: robot = world.robot(0) if not self.useDefaultAppearance: oldAppearance = [robot.link(i).appearance().clone() for i in xrange(robot.numLinks())] for i in xrange(robot.numLinks()): robot.link(i).appearance().set(self.customAppearance) oldconfig = robot.getConfig() robot.setConfig(item) robot.drawGL() robot.setConfig(oldconfig) if not self.useDefaultAppearance: for (i,app) in enumerate(oldAppearance): robot.link(i).appearance().set(app) else: print "Unable to draw Config's without a world" elif types == 'Vector3': def drawRaw(): glDisable(GL_LIGHTING) glEnable(GL_POINT_SMOOTH) glPointSize(self.attributes.get("size",5.0)) glColor4f(*self.attributes.get("color",[0,0,0,1])) glBegin(GL_POINTS) glVertex3f(0,0,0) glEnd() self.displayCache[0].draw(drawRaw,[so3.identity(),item]) if name != None: self.drawText(name,vectorops.add(item,[0,0,-0.05])) elif types == 'RigidTransform': def drawRaw(): gldraw.xform_widget(se3.identity(),self.attributes.get("length",0.1),self.attributes.get("width",0.01)) self.displayCache[0].draw(drawRaw,transform=item) if name != None: self.drawText(name,se3.apply(item,[-0.05]*3)) elif types == 'IKGoal': if hasattr(item,'robot'): #need this to be built with a robot element. #Otherwise, can't determine the correct transforms robot = item.robot elif world: if world.numRobots() >= 1: robot = world.robot(0) else: robot = None else: robot = None if robot != None: link = robot.link(item.link()) dest = robot.link(item.destLink()) if item.destLink()>=0 else None while len(self.displayCache) < 3: self.displayCache.append(CachedGLObject()) self.displayCache[1].name = self.name+" target position" self.displayCache[2].name = self.name+" curve" if item.numPosDims() != 0: lp,wp = item.getPosition() #set up parameters of connector p1 = se3.apply(link.getTransform(),lp) if dest != None: p2 = se3.apply(dest.getTransform(),wp) else: p2 = wp d = vectorops.distance(p1,p2) v1 = [0.0]*3 v2 = [0.0]*3 if item.numRotDims()==3: #full constraint R = item.getRotation() def drawRaw(): gldraw.xform_widget(se3.identity(),self.attributes.get("length",0.1),self.attributes.get("width",0.01)) t1 = se3.mul(link.getTransform(),(so3.identity(),lp)) t2 = (R,wp) if dest==None else se3.mul(dest.getTransform(),(R,wp)) self.displayCache[0].draw(drawRaw,transform=t1) self.displayCache[1].draw(drawRaw,transform=t2) vlen = d*0.1 v1 = so3.apply(t1[0],[-vlen]*3) v2 = so3.apply(t2[0],[vlen]*3) elif item.numRotDims()==0: #point constraint def drawRaw(): glDisable(GL_LIGHTING) glEnable(GL_POINT_SMOOTH) glPointSize(self.attributes.get("size",5.0)) glColor4f(*self.attributes.get("color",[0,0,0,1])) glBegin(GL_POINTS) glVertex3f(0,0,0) glEnd() self.displayCache[0].draw(drawRaw,transform=(so3.identity(),p1)) self.displayCache[1].draw(drawRaw,transform=(so3.identity(),p2)) #set up the connecting curve vlen = d*0.5 d = vectorops.sub(p2,p1) v1 = vectorops.mul(d,0.5) #curve in the destination v2 = vectorops.cross((0,0,0.5),d) else: #hinge constraint p = [0,0,0] d = [0,0,0] def drawRawLine(): glDisable(GL_LIGHTING) glEnable(GL_POINT_SMOOTH) glPointSize(self.attributes.get("size",5.0)) glColor4f(*self.attributes.get("color",[0,0,0,1])) glBegin(GL_POINTS) glVertex3f(*p) glEnd() glColor4f(*self.attributes.get("color",[0.5,0,0.5,1])) glLineWidth(self.attributes.get("width",3.0)) glBegin(GL_LINES) glVertex3f(*p) glVertex3f(*vectorops.madd(p,d,self.attributes.get("length",0.1))) glEnd() glLineWidth(1.0) ld,wd = item.getRotationAxis() p = lp d = ld self.displayCache[0].draw(drawRawLine,transform=link.getTransform(),parameters=(p,d)) p = wp d = wd self.displayCache[1].draw(drawRawLine,transform=dest.getTransform() if dest else se3.identity(),parameters=(p,d)) #set up the connecting curve d = vectorops.sub(p2,p1) v1 = vectorops.mul(d,0.5) #curve in the destination v2 = vectorops.cross((0,0,0.5),d) def drawConnection(): glDisable(GL_DEPTH_TEST) glDisable(GL_LIGHTING) glColor3f(1,0.5,0) gldraw.hermite_curve(p1,v1,p2,v2,0.03) glEnable(GL_DEPTH_TEST) self.displayCache[2].draw(drawConnection,transform=None,parameters = (p1,v1,p2,v2)) if name != None: self.drawText(name,vectorops.add(wp,[-0.05]*3)) else: wp = link.getTransform()[1] if item.numRotDims()==3: #full constraint R = item.getRotation() def drawRaw(): gldraw.xform_widget(se3.identity(),self.attributes.get("length",0.1),self.attributes.get("width",0.01)) self.displayCache[0].draw(drawRaw,transform=link.getTransform()) self.displayCache[1].draw(drawRaw,transform=se3.mul(link.getTransform(),(R,[0,0,0]))) elif item.numRotDims() > 0: #axis constraint d = [0,0,0] def drawRawLine(): glDisable(GL_LIGHTING) glColor4f(*self.attributes.get("color",[0.5,0,0.5,1])) glLineWidth(self.attributes.get("width",3.0)) glBegin(GL_LINES) glVertex3f(0,0,0) glVertex3f(*vectorops.mul(d,self.attributes.get("length",0.1))) glEnd() glLineWidth(1.0) ld,wd = item.getRotationAxis() d = ld self.displayCache[0].draw(drawRawLine,transform=link.getTransform(),parameters=d) d = wd self.displayCache[1].draw(drawRawLine,transform=(dest.getTransform()[0] if dest else so3.identity(),wp),parameters=d) else: #no drawing pass if name != None: self.drawText(name,se3.apply(wp,[-0.05]*3)) else: print "Unable to draw item of type",types #revert appearance if not self.useDefaultAppearance and hasattr(item,'appearance'): item.appearance().set(self.oldAppearance)
def __init__(self): Context.__init__(self) self.type = Type('V', 9) Rvar = Variable("R", self.type) Rsymb = VariableExpression(Rvar) R1 = Variable("R1", self.type) R2 = Variable("R2", self.type) V3type = Type('V', 3) q = Variable('q', Type('V', 4)) pointvar = Variable("point", V3type) pointsymb = VariableExpression(pointvar) self.identity = self.declare(expr(so3.identity()), "identity", []) self.identity.description = "The identity rotation" self.matrix = self.declare(expr(so3.matrix(Rsymb)), "matrix", ["R"]) self.matrix.addSimplifier(['so3.identity'], (lambda R: eye(3)), pre=True) self.matrix.description = "Converts to a 3x3 matrix" M = Variable("M", Type('M', (3, 3))) self.from_matrix = self.declare(flatten(transpose(M)), "from_matrix", ['M']) self.from_matrix.description = "Converts from a 3x3 matrix" self.from_matrix.autoSetJacobians() self.inv = self.declare(expr(so3.inv(Rsymb)), "inv", ["R"]) self.inv.description = "Inverts a rotation" self.inv.autoSetJacobians() self.inv.properties['inverse'] = weakref.proxy(self.inv) self.inv.addSimplifier(['so3.identity'], lambda R: R) self.mul = self.declare(so3.mul, "mul") self.mul.description = "Inverts a rotation" self.mul.setDeriv(0, lambda R1, R2, dR1: self.mul(dR1, R2), asExpr=True) self.mul.setDeriv(1, lambda R1, R2, dR2: self.mul(R1, dR2), asExpr=True) self.mul.addSimplifier(['so3.identity', None], (lambda R1, R2: R2), pre=True) self.mul.addSimplifier([None, 'so3.identity'], (lambda R1, R2: R1), pre=True) self.mul.properties['associative'] = True self.apply = self.declare(expr(so3.apply(Rsymb, pointsymb)), "apply", ["R", "point"]) self.apply.addSimplifier(['so3.identity', None], (lambda R, point: point), pre=True) self.apply.addSimplifier([None, 'zero'], (lambda R, point: point), pre=True) self.apply.autoSetJacobians() self.rotation = self.declare(so3.rotation, "rotation") self.from_rpy = self.declare(so3.from_rpy, "from_rpy") self.rpy = self.declare(so3.rpy, "rpy") self.from_quaternion = self.declare( expr(so3.from_quaternion([q[0], q[1], q[2], q[3]])), "from_quaternion", ["q"]) self.quaternion = self.declare(so3.quaternion, "quaternion") self.from_rotation_vector = self.declare(so3.from_rotation_vector, "from_rotation_vector") self.rotation_vector = self.declare(so3.rotation_vector, "rotation_vector") self.axis = self.declare(unit(self.rotation_vector(Rvar)), "rotation", ["R"]) self.angle = self.declare(so3.angle, "angle") self.error = self.declare(so3.error, "error") self.distance = self.declare(self.angle(self.mul(self.inv(R1), R2)), "distance", ['R1', 'R2']) self.distance.properties['nonnegative'] = True Rm = self.matrix(Rsymb) self.eq_constraint = self.declare(dot(Rm.T, Rm), 'eq_constraint', ['R']) self.quaternion_constraint = self.declare( norm2(q) - 1, 'quaternion_constraint', ['q']) self.identity.returnType = self.type self.inv.returnType = self.type self.inv.argTypes = [self.type] self.mul.returnType = self.type self.mul.argTypes = [self.type, self.type] self.apply.returnType = V3type self.apply.argTypes = [self.type, V3type] self.rotation.returnType = self.type self.rotation.argTypes = [V3type, Numeric] self.rotation.setDeriv(1, lambda axis, angle: so3.cross_product(axis)) self.axis.returnType = V3type self.axis.argTypes = [self.type] self.angle.returnType = V3type self.angle.argTypes = [self.type] def angle_deriv(R, dR): cosangle = (R[0] + R[4] + R[8] - 1) * 0.5 angle = arccos(cosangle) #dangle / dR[0] = -1.0/sqrt(1-cosangle**2) * dcosangle/dR[0] dacos = -1.0 / sqrt(1 - cosangle**2) return expr([ 0.5 * dacos * dR[0], 0, 0, 0, 0.5 * dacos * dR[4], 0, 0, 0, 0.5 * dacos * dR[8] ]) self.angle.setDeriv(0, angle_deriv, asExpr=True) self.error.returnType = V3type self.error.argTypes = [self.type, self.type] self.distance.returnType = Numeric self.distance.argTypes = [self.type, self.type] self.distance.autoSetJacobians() self.from_matrix.returnType = self.type self.from_matrix.argTypes = [M.type] self.from_rpy.returnType = self.type self.from_rpy.argTypes = [V3type] self.from_quaternion.returnType = self.type self.from_quaternion.argTypes = [Type('V', 4)] self.from_rotation_vector.returnType = self.type self.from_rotation_vector.argTypes = [V3type] self.matrix.returnType = self.from_matrix.argTypes[0] self.matrix.argTypes = [self.from_matrix.returnType] self.rpy.returnType = self.from_rpy.argTypes[0] self.rpy.argTypes = [self.from_rpy.returnType] self.quaternion.returnType = self.from_quaternion.argTypes[0] self.quaternion.argTypes = [self.from_quaternion.returnType] self.rotation_vector.returnType = self.from_rotation_vector.argTypes[0] self.rotation_vector.argTypes = [self.from_rotation_vector.returnType]
def edit(name,value,type='auto',description=None,editor='visual',world=None,frame=None): """Launches an editor for the given value. Returns a pair (save,result) where save indicates what the user wanted to do with the edited value and result is the edited value.""" if name == None and type=='auto': raise RuntimeError("Cannot do an anonymous edit without the 'type' argument specified") if name == None: name = 'Anonymous' if type == 'auto': type = nameToType(name) if not _PyQtAvailable and editor=='visual': print "PyQt is not available, defaulting to console editor" editor = 'console' if isinstance(world,str): #a single argument, e.g., a robot file global _editTemporaryWorlds if world not in _editTemporaryWorlds: _editTemporaryWorlds[world] = WorldModel() if not _editTemporaryWorlds[world].readFile(world): raise RuntimeError("Error loading world file "+world) world = _editTemporaryWorlds[world] if isinstance(frame,str): try: oframe = world.rigidObject(frame) frame = oframe except RuntimeError: try: oframe = world.robot(0).getLink(frame) frame = oframe except RuntimeError: try: oframe = world.terrain(frame) frame = oframe except RuntimeError: raise RuntimeError('Named frame "'+frame+'" is not a valid frame') if value==None: if type == 'Config': if world==None: raise RuntimeError("Cannot visually edit a Config resource without a world") value = world.robot(0).getConfig() elif type == 'Configs': raise RuntimeError("Cannot visually edit a Configs resource without a world") value = [world.robot(0).getConfig()] elif type == 'IKGoal': value = IKObjective() elif type == 'Vector3' or type == 'Point': value = [0,0,0] elif type == 'Rotation': value = so3.identity() elif type == 'RigidTransform': value = se3.identity() else: raise RuntimeError("Don't know how to edit objects of type "+type) if editor == 'console': return console_edit(name,value,type,description,world,frame) elif editor == 'visual': if type == 'Config': return _launch(_ConfigVisualEditor(name,value,description,world)) elif type == 'Configs': return _launch(_ConfigsVisualEditor(name,value,description,world)) elif type == 'Vector3' or type == 'Point': if isinstance(frame,(RigidObjectModel,RobotModelLink)): frame = frame.getTransform() return _launch(_PointVisualEditor(name,value,description,world,frame)) elif type == 'Rotation': if isinstance(frame,(RigidObjectModel,RobotModelLink)): frame = frame.getTransform() return _launch(_RotationVisualEditor(name,value,description,world,frame)) elif type == 'RigidTransform': if isinstance(frame,RigidObjectModel): return _launch(_ObjectTransformVisualEditor(name,value,description,world,frame)) if isinstance(frame,RobotModelLink): frame = frame.getTransform() return _launch(_RigidTransformVisualEditor(name,value,description,world,frame)) else: raise RuntimeError("Don't know how to edit objects of type "+type) else: raise ValueError("Invalid value for argument 'editor', must be either 'visual' or 'console'")
def from_translation(t): """Returns a transformation T that translates points by t""" return (so3.identity(), t[:])
def from_translation(t): """Returns a transformation T that translates points by t""" return (so3.identity(),t[:])