import socialsim as ss # Load the configuration file config = 'data/cp4_configuration.json' config = ss.load_config(config) # Get metadata metadata = ss.MetaData() # Instantiate the task runner with the specified ground truth ground_truth_filepath = 'data/test_dataset.json' ground_truth = ss.load_data(ground_truth_filepath, ignore_first_line=True, verbose=False) eval_runner = ss.EvaluationRunner(ground_truth, config, metadata=metadata) # Evaluate a series of submissions that contain submission metadata as the first line of the submission file\ submission_filepaths = ['data/test_dataset.json'] for simulation_filepath in submission_filepaths: # Run measurements and metrics on the simulation data results, logs = eval_runner(simulation_filepath, verbose=True, submission_meta=True)
import socialsim as ss # Load the simulation data simulation = 'data/test_dataset.txt' simulation = ss.load_data(simulation) # Load the ground truth data ground_truth = 'data/test_dataset.txt' ground_truth = ss.load_data(ground_truth) # Load the configuration file config = 'data/cp2_configuration.json' config = ss.load_config(config) # Get metadata metadata = ss.MetaData(community_directory='data/communities/') # Instantiate the task runner task_runner = ss.TaskRunner(ground_truth, config, metadata=metadata, test=True) # Run measurements and metrics on the simulation data results = task_runner(simulation, verbose=True)
import socialsim as ss # Load the example dataset dataset = 'data/test_dataset.txt' dataset = ss.load_data(dataset) # Load the configuration file config = 'data/recurrence_configuration.json' config = ss.load_config(config) # Subset the configuration for the given task config = config config = config['recurrence'] # load metadata metadata = ss.MetaData(community_directory='data/communities', content_data=True) # Define the measurement object # recurrence_measurements = ss.RecurrenceMeasurements(dataset, config['recurrence'], id_col='nodeID', userid_col='nodeUserID', timestamp_col='nodeTime', content_col='informationID') recurrence_measurements = ss.RecurrenceMeasurements(dataset, config['recurrence'], metadata=metadata, id_col='nodeID', userid_col='nodeUserID', timestamp_col='nodeTime', content_col='platform', time_granularity='H') # Run all measurements in the config file results = recurrence_measurements.run(verbose=True)
from pprint import pprint import socialsim as ss # Load the simulation data simulation = 'data/test_dataset.txt' simulation = ss.load_data(simulation, ignore_first_line=True, verbose=False) # Load the ground truth data ground_truth = 'data/test_dataset.txt' ground_truth = ss.load_data(ground_truth, ignore_first_line=True, verbose=False) # Load the configuration file config = 'data/cp2_configuration.json' config = ss.load_config(config) # Get metadata metadata = ss.MetaData(community_directory='data/communities/', node_file='data/node_list.txt') # Instantiate the task runner task_runner = ss.TaskRunner(ground_truth, config, metadata=metadata, test=True) # Run measurements and metrics on the simulation data results, logs = task_runner(simulation, verbose=True) # Print metrics pprint(results['metrics'])