def test_rerank_hypotheses(hypotheses, reference, expected_output, metric): reranker = rerank.Reranker(metric=metric, return_score=False) reranked = reranker.rerank_hypotheses(hypotheses, reference) actual_list = reranked.hypotheses assert actual_list == expected_output
def test_rerank_return_score(hypotheses, reference, expected_scores): reranker = rerank.Reranker(metric="bleu", return_score=True) hypotheses = {'translations': hypotheses} reranked_hypotheses = reranker.rerank(hypotheses, reference) assert 'scores' in reranked_hypotheses actual_scores = reranked_hypotheses['scores'] assert np.allclose(actual_scores, expected_scores)
def test_rerank_return_score(hypotheses, reference, expected_scores): reranker = rerank.Reranker(metric="bleu", return_score=True) reranked_with_scores = reranker.rerank_hypotheses(hypotheses, reference) actual_scores = reranked_with_scores.scores assert np.allclose(actual_scores, expected_scores)
def test_rerank_hypotheses(hypotheses, reference, expected_output, metric): reranker = rerank.Reranker(metric=metric, return_score=False) hypotheses = { 'sentence_id': 0, 'translation': '', 'translations': hypotheses } reranked_hypotheses = reranker.rerank(hypotheses, reference) assert reranked_hypotheses['translations'] == expected_output
def test_rerank_top1(hypotheses, reference, expected_best): reranker = rerank.Reranker(metric="bleu", return_score=False) reranked = reranker.rerank_top1(hypotheses, reference) assert len(reranked.hypotheses ) == 1, "Rerank top1 should not return more than 1 hypothesis." actual_hypothesis = reranked.hypotheses[0] assert actual_hypothesis == expected_best
def test_rerank_top1_score(hypotheses, reference, expected_best, expected_score): reranker = rerank.Reranker(metric="bleu", return_score=True) reranked_with_scores = reranker.rerank_top1(hypotheses, reference) assert len(reranked_with_scores.hypotheses ) == 1, "Rerank top1 should not return more than 1 hypothesis." actual_hypothesis = reranked_with_scores.hypotheses[0] actual_score = reranked_with_scores.scores[0] assert actual_hypothesis == expected_best assert np.isclose(actual_score, expected_score)
def test_rerank_hypotheses_isometric(source, hypotheses, scores, reference, expected_output, metric): reranker = rerank.Reranker(metric=metric, isometric_alpha=0.5, return_score=False) hypotheses = { 'sentence_id': 0, 'text': source, 'translation': '', 'scores': scores, 'translations': hypotheses } reranked_hypotheses = reranker.rerank(hypotheses, reference) assert reranked_hypotheses['translations'] == expected_output
def test_rerank_return_score(source, hypotheses, reference, expected_scores): reranker = rerank.Reranker(metric="bleu", isometric_alpha=0.5, return_score=True) hypotheses = { 'sentence_id': 0, 'text': source, 'translation': '', 'translations': hypotheses } reranked_hypotheses = reranker.rerank(hypotheses, reference) assert 'scores' in reranked_hypotheses actual_scores = reranked_hypotheses['scores'] assert np.allclose(actual_scores, expected_scores)