Пример #1
0
    def test_scoping_creates_new_variables_across_instances(self):
        output_size = 5
        x = tf.random.uniform((1, 13))

        self.assertFalse(tf.compat.v1.trainable_variables())

        fn1 = feedforward_model(
            output_size=output_size,
            hidden_layer_sizes=(6, 4, 2),
            name='feedforward_function_1')
        _ = fn1([x])

        num_trainable_variables_1 = len(tf.compat.v1.trainable_variables())

        fn2 = feedforward_model(
            output_size=output_size,
            hidden_layer_sizes=(6, 4, 2),
            name='feedforward_function_2')
        _ = fn2([x])

        num_trainable_variables_2 = len(tf.compat.v1.trainable_variables())

        self.assertGreater(num_trainable_variables_1, 0)
        self.assertEqual(
            num_trainable_variables_1 * 2, num_trainable_variables_2)

        num_trainable_variables_3 = len(tf.compat.v1.trainable_variables())
        self.assertEqual(
            num_trainable_variables_2, num_trainable_variables_3)
Пример #2
0
    def test_scoping_creates_new_variables_across_instances(self):
        output_size = 5
        x = tf.random_uniform((1, 13))

        self.assertFalse(tf.trainable_variables())

        fn1 = feedforward_model(input_shapes=(x.shape[1:], ),
                                output_size=output_size,
                                hidden_layer_sizes=(6, 4, 2),
                                name='feedforward_function_1')

        num_trainable_variables_1 = len(tf.trainable_variables())

        fn2 = feedforward_model(input_shapes=(x.shape[1:], ),
                                output_size=output_size,
                                hidden_layer_sizes=(6, 4, 2),
                                name='feedforward_function_2')

        num_trainable_variables_2 = len(tf.trainable_variables())

        self.assertGreater(num_trainable_variables_1, 0)
        self.assertEqual(num_trainable_variables_1 * 2,
                         num_trainable_variables_2)

        # Make sure that all variables were created before calling the fn
        _ = fn1([x])
        _ = fn2([x])

        num_trainable_variables_3 = len(tf.trainable_variables())
        self.assertEqual(num_trainable_variables_2, num_trainable_variables_3)
Пример #3
0
def create_dynamics_model(input_shapes,
                          dynamics_latent_dim,
                          *args,
                          preprocessors=None,
                          observation_keys=None,
                          goal_keys=None,
                          name='dynamics_model',
                          encoder_kwargs=None,
                          decoder_kwargs=None,
                          **kwargs):
    inputs_flat = create_inputs(input_shapes)
    preprocessors_flat = (
        flatten_input_structure(preprocessors)
        if preprocessors is not None
        else tuple(None for _ in inputs_flat))

    assert len(inputs_flat) == len(preprocessors_flat), (
        inputs_flat, preprocessors_flat)

    preprocessed_inputs = [
        preprocessor(input_) if preprocessor is not None else input_
        for preprocessor, input_
        in zip(preprocessors_flat, inputs_flat)
    ]
    encoder = feedforward_model(
        *args,
        output_size=dynamics_latent_dim,
        name=f'{name}_encoder',
        **encoder_kwargs)

    output_size = sum([
        shape.as_list()[0]
        for shape in input_shapes['observations'].values()
    ])
    decoder = feedforward_model(
        *args,
        output_size=output_size,
        name=f'{name}_decoder',
        **decoder_kwargs)

    latent = encoder(preprocessed_inputs)
    dynamics_pred = decoder(latent)

    dynamics_model = PicklableModel(inputs_flat, dynamics_pred, name=name)

    dynamics_model.observation_keys = observation_keys or tuple()
    dynamics_model.goal_keys = goal_keys or tuple()
    dynamics_model.all_keys = dynamics_model.observation_keys + dynamics_model.goal_keys

    dynamics_model.encoder = PicklableModel(inputs_flat, latent, name=f'{name}_encoder_model')

    return dynamics_model
Пример #4
0
def state_estimator_model(
        input_shape,
        num_hidden_units=256,
        num_hidden_layers=2,
        output_size=4,  # (x, y, z_cos, z_sin)
        kernel_regularizer=None,
        preprocessor_params=None,
        preprocessor=None,
        name='state_estimator_preprocessor'):
    # TODO: Make this take in observation keys instead of this hardcoded output size.
    obs_preprocessor_params = (preprocessor_params
                               or DEFAULT_STATE_ESTIMATOR_PREPROCESSOR_PARAMS)
    #     preprocessor = convnet_model(
    #         name='convnet_preprocessor_state_est',
    #         **convnet_kwargs)

    if preprocessor is None:
        preprocessor = get_preprocessor_from_params(None,
                                                    obs_preprocessor_params)

    state_estimator = feedforward_model(
        hidden_layer_sizes=(num_hidden_units, ) * num_hidden_layers,
        output_size=output_size,
        output_activation=tf.keras.activations.tanh,
        kernel_regularizer=
        kernel_regularizer,  # tf.keras.regularizers.l2(0.001),
        name='feedforward_state_est')
    model = tfk.Sequential([
        tfk.Input(shape=input_shape, name='pixels', dtype=tf.uint8),
        preprocessor,
        state_estimator,
    ],
                           name=name)
    return model
Пример #5
0
def create_feedforward_Q_function(input_shapes,
                                  *args,
                                  preprocessors=None,
                                  observation_keys=None,
                                  name='feedforward_Q',
                                  **kwargs):
    print(input_shapes)
    inputs_flat = create_inputs(input_shapes)
    preprocessors_flat = (flatten_input_structure(preprocessors)
                          if preprocessors is not None else tuple(
                              None for _ in inputs_flat))

    assert len(inputs_flat) == len(preprocessors_flat), (inputs_flat,
                                                         preprocessors_flat)

    preprocessed_inputs = [
        tf.cast(preprocessor(input_), dtype=tf.float32)
        if preprocessor is not None else tf.cast(input_, dtype=tf.float32)
        for preprocessor, input_ in zip(preprocessors_flat, inputs_flat)
    ]

    Q_function = feedforward_model(*args, output_size=1, name=name, **kwargs)

    Q_function = PicklableModel(inputs_flat, Q_function(preprocessed_inputs))
    Q_function.observation_keys = observation_keys

    return Q_function
Пример #6
0
def create_feedforward_Q_function(input_shapes,
                                  *args,
                                  preprocessors=None,
                                  observation_keys=None,
                                  goal_keys=None,
                                  name='feedforward_Q',
                                  **kwargs):
    inputs_flat = create_inputs(input_shapes)
    preprocessors_flat = (flatten_input_structure(preprocessors)
                          if preprocessors is not None else tuple(
                              None for _ in inputs_flat))

    assert len(inputs_flat) == len(preprocessors_flat), (inputs_flat,
                                                         preprocessors_flat)

    preprocessed_inputs = [
        preprocessor(input_) if preprocessor is not None else input_
        for preprocessor, input_ in zip(preprocessors_flat, inputs_flat)
    ]

    Q_function = feedforward_model(*args, output_size=1, name=name, **kwargs)

    Q_function = PicklableModel(inputs_flat, Q_function(preprocessed_inputs))
    preprocessed_inputs_fn = PicklableModel(inputs_flat, preprocessed_inputs)

    Q_function.observation_keys = observation_keys or ()
    Q_function.goal_keys = goal_keys or ()
    Q_function.all_keys = observation_keys + goal_keys

    Q_function.actions_preprocessors = preprocessors['actions']
    Q_function.observations_preprocessors = preprocessors['observations']

    Q_function.preprocessed_inputs_fn = preprocessed_inputs_fn
    return Q_function
Пример #7
0
    def __call__(self, x, output_units, **condition_kwargs):
        if not self._built:
            self._shift_and_log_scale_model = feedforward_model(
                hidden_layer_sizes=self.hidden_layer_sizes,
                output_shape=[(1 if self.shift_only else 2) * output_units],
                activation=self.activation,
                output_activation=self.output_activation)
            self._built = True

        # condition_kwargs is a dict, but feedforward_model implicitly flattens
        # these values. Effectively the same as
        # self._shift_and_log_scale_model(tree.flatten((x, condition_kwargs)))
        shift_and_log_scale = self._shift_and_log_scale_model(
            (x, condition_kwargs))

        # It would be nice to have these be encapsulated in the
        # `self._shift_and_log_scale_model`, but the issue is that
        # `tf.keras.Sequential` can't return tuples/lists, and functional
        # model type would have to know the input shape in advance.
        # The correct way here would be to create a subclassed model and
        # instantiate the model in the `build` method.
        shift, log_scale = tf.keras.layers.Lambda(
            lambda x: tf.split(x, 2, axis=-1))(shift_and_log_scale)
        bijector = bijectors.affine_scalar.AffineScalar(shift=shift,
                                                        log_scale=log_scale)
        return bijector
Пример #8
0
def create_embedding_fn(input_shapes,
                        embedding_dim,
                        *args,
                        preprocessors=None,
                        observation_keys=None,
                        goal_keys=None,
                        name='embedding_fn',
                        **kwargs):
    inputs_flat = create_inputs(input_shapes)
    preprocessors_flat = (flatten_input_structure(preprocessors)
                          if preprocessors is not None else tuple(
                              None for _ in inputs_flat))

    assert len(inputs_flat) == len(preprocessors_flat), (inputs_flat,
                                                         preprocessors_flat)

    preprocessed_inputs = [
        preprocessor(input_) if preprocessor is not None else input_
        for preprocessor, input_ in zip(preprocessors_flat, inputs_flat)
    ]

    embedding_fn = feedforward_model(*args,
                                     output_size=embedding_dim,
                                     name=f'feedforward_{name}',
                                     **kwargs)

    embedding_fn = PicklableModel(inputs_flat,
                                  embedding_fn(preprocessed_inputs),
                                  name=name)

    embedding_fn.observation_keys = observation_keys or tuple()
    embedding_fn.goal_keys = goal_keys or tuple()
    embedding_fn.all_keys = embedding_fn.observation_keys + embedding_fn.goal_keys

    return embedding_fn
Пример #9
0
def feedforward_Q_function(input_shapes,
                           *args,
                           preprocessors=None,
                           observation_keys=None,
                           name='feedforward_Q',
                           **kwargs):
    inputs = create_inputs(input_shapes)

    if preprocessors is None:
        preprocessors = tree.map_structure(lambda _: None, inputs)

    preprocessors = tree.map_structure_up_to(inputs,
                                             preprocessors_lib.deserialize,
                                             preprocessors)

    preprocessed_inputs = apply_preprocessors(preprocessors, inputs)

    # NOTE(hartikainen): `feedforward_model` would do the `cast_and_concat`
    # step for us, but tf2.2 broke the sequential multi-input handling: See:
    # https://github.com/tensorflow/tensorflow/issues/37061.
    out = tf.keras.layers.Lambda(cast_and_concat)(preprocessed_inputs)
    Q_model_body = feedforward_model(*args,
                                     output_shape=[1],
                                     name=name,
                                     **kwargs)

    Q_model = tf.keras.Model(inputs, Q_model_body(out), name=name)

    Q_function = StateActionValueFunction(model=Q_model,
                                          observation_keys=observation_keys,
                                          name=name)

    return Q_function
Пример #10
0
    def _shift_and_log_scale_diag_net(self, output_size):
        shift_and_log_scale_diag_net = feedforward_model(
            hidden_layer_sizes=self._hidden_layer_sizes,
            output_size=output_size,
            activation=self._activation,
            output_activation=self._output_activation)

        return shift_and_log_scale_diag_net
Пример #11
0
def get_feedforward_preprocessor(observation_shape,
                                 name='feedforward_preprocessor',
                                 **kwargs):
    from softlearning.models.feedforward import feedforward_model
    preprocessor = feedforward_model(input_shapes=(observation_shape, ),
                                     name=name,
                                     **kwargs)

    return preprocessor
Пример #12
0
def get_random_nn_preprocessor(name='random_nn_preprocessor', **kwargs):
    from softlearning.models.feedforward import feedforward_model
    preprocessor = feedforward_model(name=name, **kwargs)
    # Don't update weights in this random NN

    import ipdb
    ipdb.set_trace()
    preprocessor = tf.stop_gradient(preprocessor)
    return preprocessor
    def __init__(self, observation_space, output_size, *args, **kwargs):
        super(FeedforwardPreprocessor, self).__init__(observation_space,
                                                      output_size)

        assert isinstance(observation_space, spaces.Box)
        input_shapes = (observation_space.shape, )

        self._feedforward = feedforward_model(*args,
                                              input_shapes=input_shapes,
                                              output_size=output_size,
                                              **kwargs)
Пример #14
0
def create_feedforward_V_function(observation_shape,
                                  *args,
                                  observation_preprocessor=None,
                                  name='feedforward_V',
                                  **kwargs):
    input_shapes = (observation_shape, )
    preprocessors = (observation_preprocessor, None)
    return feedforward_model(input_shapes,
                             *args,
                             output_size=1,
                             preprocessors=preprocessors,
                             **kwargs)
Пример #15
0
def create_feedforward_Q_function(observation_shape,
                                  action_shape,
                                  *args,
                                  observation_preprocessor=None,
                                  name='feedforward_Q',
                                  **kwargs):
    input_shapes = (observation_shape, action_shape)
    preprocessors = (observation_preprocessor, None)
    return feedforward_model(input_shapes,
                             *args,
                             preprocessors=preprocessors,
                             name=name,
                             **kwargs)
Пример #16
0
    def _shift_and_scale_diag_net(self, inputs, output_size):
        preprocessed_inputs = self._preprocess_inputs(inputs)
        shift_and_scale_diag = feedforward_model(
            hidden_layer_sizes=self._hidden_layer_sizes,
            output_shape=(output_size, ),
            activation=self._activation,
            output_activation=self._output_activation)(preprocessed_inputs)

        shift, scale = tf.keras.layers.Lambda(lambda x: tf.split(
            x, num_or_size_splits=2, axis=-1))(shift_and_scale_diag)
        scale = tf.keras.layers.Lambda(lambda x: tf.math.softplus(x))(scale)
        shift_and_scale_diag_model = tf.keras.Model(inputs, (shift, scale))

        return shift_and_scale_diag_model
Пример #17
0
def create_feedforward_reward_classifier(observation_shape,
                                         *args,
                                         observation_preprocessor=None,
                                         name='feedforward_classifier',
                                         **kwargs):
    input_shapes = (observation_shape, )
    preprocessors = (observation_preprocessor, None)
    return feedforward_model(
        input_shapes,
        *args,
        output_size=1,
        preprocessors=preprocessors,
        kernel_regularizer=tf.keras.regularizers.l2(0.001),
        **kwargs)
Пример #18
0
    def test_clone_model(self):
        """Make sure that cloning works and clones can predict.

        TODO(hartikainen): This test weirdly mixed `tf.keras.backend.eval`
        with `self.evaluate`. Should figure out the best way to handle keras
        and test sessions.
        """
        output_size = 5
        x_np = np.random.uniform(0, 1, (1, 13)).astype(np.float32)
        x = tf.constant(x_np)

        fn1 = feedforward_model(input_shapes=(x.shape[1:], x.shape[1:]),
                                output_size=output_size,
                                hidden_layer_sizes=(6, 4, 2),
                                name='feedforward_function')

        tf.keras.backend.get_session().run(tf.global_variables_initializer())

        fn2 = tf.keras.models.clone_model(fn1)

        for variable_1, variable_2 in zip(fn1.trainable_variables,
                                          fn2.trainable_variables):
            self.assertEqual(variable_1.shape, variable_2.shape)

            if 'kernel' in variable_1.name:
                self.assertNotAllClose(tf.keras.backend.eval(variable_1),
                                       tf.keras.backend.eval(variable_2))

        self.assertEqual(
            len(set(fn1.trainable_variables)
                & set(fn2.trainable_variables)), 0)

        result_1 = fn1([x, x])
        result_1_predict = fn1.predict([x_np, x_np])
        result_1_eval = tf.keras.backend.eval(result_1)

        result_2 = fn2([x, x])
        result_2_predict = fn2.predict([x_np, x_np])
        result_2_eval = tf.keras.backend.eval(result_2)

        self.assertEqual(fn1.name, fn2.name)
        self.assertEqual(result_1_predict.shape, result_2_predict.shape)

        self.assertAllEqual(result_1_predict, result_1_eval)
        self.assertAllEqual(result_2_predict, result_2_eval)
Пример #19
0
def create_feedforward_Q_function(input_shapes,
                                  *args,
                                  preprocessors=None,
                                  observation_keys=None,
                                  name='feedforward_Q',
                                  **kwargs):
    inputs = create_inputs(input_shapes)
    if preprocessors is None:
        preprocessors = tree.map_structure(lambda _: None, inputs)

    preprocessed_inputs = apply_preprocessors(preprocessors, inputs)

    Q_function = feedforward_model(*args, output_size=1, name=name, **kwargs)

    Q_function = PicklableModel(inputs, Q_function(preprocessed_inputs))
    Q_function.observation_keys = observation_keys

    return Q_function
Пример #20
0
    def test_clone_model(self):
        """Make sure that cloning works and clones can predict."""
        output_size = 5
        x_np = np.random.uniform(0, 1, (1, 13)).astype(np.float32)
        x = tf.constant(x_np)

        fn1 = feedforward_model(
            output_size=output_size,
            hidden_layer_sizes=(6, 4, 2),
            name='feedforward_function')
        result_1 = fn1([x, x])

        tf.compat.v1.keras.backend.get_session().run(
            tf.compat.v1.global_variables_initializer())

        fn2 = tf.keras.models.clone_model(fn1)
        result_2 = fn2([x, x])

        variable_names = [x.name for x in fn1.variables]
        for variable_name, variable_1, variable_2 in zip(
                variable_names, fn1.get_weights(), fn2.get_weights()):
            self.assertEqual(variable_1.shape, variable_2.shape)

            if 'kernel' in variable_name:
                self.assertNotAllClose(variable_1, variable_2)

        self.assertEqual(
            len(set(fn1.trainable_variables)
                & set(fn2.trainable_variables)),
            0)

        with self.assertRaises(ValueError):
            # TODO(hartikainen): investigate why this fails
            result_1_predict = fn1.predict([x_np, x_np])
            result_1_eval = tf.compat.v1.keras.backend.eval(result_1)

            result_2_predict = fn2.predict([x_np, x_np])
            result_2_eval = tf.compat.v1.keras.backend.eval(result_2)

            self.assertEqual(fn1.name, fn2.name)
            self.assertEqual(result_1_predict.shape, result_2_predict.shape)

            self.assertAllEqual(result_1_predict, result_1_eval)
            self.assertAllEqual(result_2_predict, result_2_eval)
Пример #21
0
    def _fn(x, output_units, **condition_kwargs):
        """MLP which concatenates the condition kwargs to input."""

        shift_and_log_scale = feedforward_model(
            hidden_layer_sizes=hidden_layer_sizes,
            output_size=(1 if shift_only else 2) * output_units,
            activation=activation,
            output_activation=output_activation,
            name=name,
        )([x, condition_kwargs])

        if shift_only:
            return shift_and_log_scale, None

        shift, log_scale = tf.keras.layers.Lambda(
            lambda shift_and_scale: tf.split(shift_and_scale, 2, axis=-1))(
                shift_and_log_scale)

        return shift, log_scale
Пример #22
0
def create_distance_estimator(input_shapes,
                              *args,
                              preprocessors=None,
                              observation_keys=None,
                              goal_keys=None,
                              name='distance_estimator',
                              classifier_params=None,
                              **kwargs):
    inputs_flat = create_inputs(input_shapes)
    preprocessors_flat = (flatten_input_structure(preprocessors)
                          if preprocessors is not None else tuple(
                              None for _ in inputs_flat))

    assert len(inputs_flat) == len(preprocessors_flat), (inputs_flat,
                                                         preprocessors_flat)

    preprocessed_inputs = [
        preprocessor(input_) if preprocessor is not None else input_
        for preprocessor, input_ in zip(preprocessors_flat, inputs_flat)
    ]

    output_size = 1 if not classifier_params else int(
        classifier_params.get('bins', 1) + 1)

    distance_fn = feedforward_model(*args,
                                    output_size=output_size,
                                    name=name,
                                    **kwargs)

    distance_fn = PicklableModel(inputs_flat, distance_fn(preprocessed_inputs))
    # preprocessed_inputs_fn = PicklableModel(inputs_flat, preprocessed_inputs)

    distance_fn.observation_keys = observation_keys or tuple()
    distance_fn.goal_keys = goal_keys or tuple()
    distance_fn.all_keys = distance_fn.observation_keys + distance_fn.goal_keys
    distance_fn.classifier_params = classifier_params

    # distance_fn.observations_preprocessors = preprocessors['s1']
    # distance_fn.preprocessed_inputs_fn = preprocessed_inputs_fn
    return distance_fn
Пример #23
0
def create_feedforward_reward_classifier_function(
        input_shapes,
        *args,
        preprocessors=None,
        observation_keys=None,
        name='feedforward_reward_classifier',
        kernel_regularizer_lambda=1e-3,
        # output_activation=tf.math.log_sigmoid,
        **kwargs):
    inputs_flat = create_inputs(input_shapes)
    preprocessors_flat = (flatten_input_structure(preprocessors)
                          if preprocessors is not None else tuple(
                              None for _ in inputs_flat))

    assert len(inputs_flat) == len(preprocessors_flat), (inputs_flat,
                                                         preprocessors_flat)

    preprocessed_inputs = [
        preprocessor(input_) if preprocessor is not None else input_
        for preprocessor, input_ in zip(preprocessors_flat, inputs_flat)
    ]

    reward_classifier_function = feedforward_model(
        *args,
        output_size=1,
        kernel_regularizer=tf.keras.regularizers.l2(kernel_regularizer_lambda)
        if kernel_regularizer_lambda else None,
        name=name,
        # output_activation=output_activation,
        **kwargs)

    # from IPython import embed; embed()
    reward_classifier_function = PicklableModel(
        inputs_flat, reward_classifier_function(preprocessed_inputs))
    reward_classifier_function.observation_keys = observation_keys
    reward_classifier_function.observations_preprocessors = preprocessors

    return reward_classifier_function
Пример #24
0
    def test_scoping_reuses_variables_on_single_instance(self):
        output_size = 5
        x1 = tf.random.uniform((3, 2))
        x2 = tf.random.uniform((3, 13))

        self.assertFalse(tf.compat.v1.trainable_variables())

        fn = feedforward_model(
            output_size=output_size,
            hidden_layer_sizes=(6, 4, 2),
            name='feedforward_function')

        self.assertEqual(len(tf.compat.v1.trainable_variables()), 0)

        _ = fn([x1, x2])
        num_trainable_variables_1 = len(tf.compat.v1.trainable_variables())

        self.assertGreater(num_trainable_variables_1, 0)

        _ = fn([x2, x1])
        num_trainable_variables_2 = len(tf.compat.v1.trainable_variables())

        self.assertEqual(num_trainable_variables_1, num_trainable_variables_2)
Пример #25
0
    def test_clone_model(self):
        """Make sure that cloning works and clones can predict."""
        output_shape = (5, )
        x_np = np.random.uniform(0, 1, (1, 13)).astype(np.float32)
        x = tf.constant(x_np)

        fn1 = feedforward_model(output_shape=output_shape,
                                hidden_layer_sizes=(6, 4, 2),
                                name='feedforward_function')
        result_1 = fn1([x, x]).numpy()

        fn2 = tf.keras.models.clone_model(fn1)
        result_2 = fn2([x, x]).numpy()

        variable_names = [x.name for x in fn1.variables]
        for variable_name, variable_1, variable_2 in zip(
                variable_names, fn1.get_weights(), fn2.get_weights()):
            self.assertEqual(variable_1.shape, variable_2.shape)

            if 'kernel' in variable_name:
                self.assertNotAllClose(variable_1, variable_2)

        self.assertEqual(
            len(
                set((v1.experimental_ref() for v1 in fn1.trainable_variables))
                & set((v2.experimental_ref()
                       for v2 in fn2.trainable_variables))), 0)

        result_1_predict = fn1.predict((x_np, x_np))
        result_2_predict = fn2.predict((x_np, x_np))

        self.assertEqual(fn1.name, fn2.name)
        self.assertEqual(result_1_predict.shape, result_2_predict.shape)

        self.assertAllEqual(result_1_predict, result_1)
        self.assertAllEqual(result_2_predict, result_2)
Пример #26
0
def convnet_preprocessor(input_shapes,
                         image_shape,
                         output_size,
                         conv_filters=(32, 32),
                         conv_kernel_sizes=((5, 5), (5, 5)),
                         pool_type='MaxPool2D',
                         pool_sizes=((2, 2), (2, 2)),
                         pool_strides=(2, 2),
                         dense_hidden_layer_sizes=(64, 64),
                         data_format='channels_last',
                         name="convnet_preprocessor",
                         make_picklable=True,
                         *args,
                         **kwargs):
    if data_format == 'channels_last':
        H, W, C = image_shape
    elif data_format == 'channels_first':
        C, H, W = image_shape

    inputs = [
        tf.keras.layers.Input(shape=input_shape)
        for input_shape in input_shapes
    ]

    concatenated_input = tf.keras.layers.Lambda(
        lambda x: tf.concat(x, axis=-1))(inputs)

    images_flat, input_raw = tf.keras.layers.Lambda(
        lambda x: [x[..., :H * W * C], x[..., H * W * C:]])(concatenated_input)

    images = tf.keras.layers.Reshape(image_shape)(images_flat)

    conv_out = images
    for filters, kernel_size, pool_size, strides in zip(
            conv_filters, conv_kernel_sizes, pool_sizes, pool_strides):
        conv_out = tf.keras.layers.Conv2D(filters=filters,
                                          kernel_size=kernel_size,
                                          padding="SAME",
                                          activation=tf.nn.relu,
                                          *args,
                                          **kwargs)(conv_out)
        conv_out = getattr(tf.keras.layers,
                           pool_type)(pool_size=pool_size,
                                      strides=strides)(conv_out)

    flattened = tf.keras.layers.Flatten()(conv_out)
    concatenated_output = tf.keras.layers.Lambda(
        lambda x: tf.concat(x, axis=-1))([flattened, input_raw])

    output = (feedforward_model(
        input_shapes=(concatenated_output.shape[1:].as_list(), ),
        output_size=output_size,
        hidden_layer_sizes=dense_hidden_layer_sizes,
        activation='relu',
        output_activation='linear',
        *args,
        **kwargs)([concatenated_output])
              if dense_hidden_layer_sizes else concatenated_output)

    model = PicklableKerasModel(inputs, output, name=name)

    return model
Пример #27
0
def get_feedforward_preprocessor(name='feedforward_preprocessor', **kwargs):
    from softlearning.models.feedforward import feedforward_model

    preprocessor = feedforward_model(name=name, **kwargs)

    return preprocessor
Пример #28
0
    def test_without_name(self):
        fn = feedforward_model(
            output_size=1,
            hidden_layer_sizes=(6, 4, 2))

        self.assertEqual(fn.name, 'feedforward_model')