Пример #1
0
def verifyFirstIterationCostFunction():
    theta = np.zeros([10, trainX.shape[1]])

    cost = computeCostFunction(trainX, trainY, theta, lambdaFactor)
    if abs(cost - 2.30258509299) < 1.0e-6:
        print "Verifying cost during first iteration: Passed"
    else:
        print "Verifying cost during first iteration: Failed"
Пример #2
0
def verifySecondIterationCostFunction():
    theta = np.zeros([10, trainX.shape[1]])

    for i in xrange(2):
        cost = computeCostFunction(trainX, trainY, theta, lambdaFactor)
        theta = runGradientDescentIteration(trainX, trainY, theta, alpha,
                                            lambdaFactor)

    if abs(cost - 0.896839929358) < 1.0e-6:
        print "Verifying cost during second iteration: Passed"
    else:
        print "Verifying cost during second iteration: Failed"
def verifyInputOutputTypesSoftmax():
    trainX, trainY, testX, testY = getMNISTData()
    trainX = augmentFeatureVector(trainX[0:10])
    trainY = trainY[0:10]
    alpha = 0.3
    lambdaFactor = 1.0e-4
    theta = np.zeros([10, trainX.shape[1]])
    tempParameter = 1

    # check computeCostFunction
    cost = computeCostFunction(trainX, trainY, theta, lambdaFactor,
                               tempParameter)
    print('PASSED: computeCostFunction appears to handle correct input type.')
    if isinstance(cost, float):
        print('PASSED: computeCostFunction appears to return the right type.')
    else:
        print(
            'FAILED: computeCostFunction appears to return the wrong type. Expected {0} but got {1}'
            .format(float, type(cost)))

    # check computeProbabilities
    probabilities = computeProbabilities(trainX, theta, tempParameter)
    print('PASSED: computeProbabilities appears to handle correct input type.')
    if isinstance(probabilities, np.ndarray):
        if probabilities.shape == (10, 10):
            print(
                'PASSED: computeProbabilities return value appears to return a numpy array of the right shape.'
            )
        else:
            print('FAILED: computeProbabilities return value appears to return a numpy array but with the wrong size. ' + \
                    'Expected a shape of {0} but got {1}.'.format((10,10), probabilities.shape))
    else:
        print('FAILED: computeProbabilities appears to be the wrong type. ' + \
                'Expected {0} but got {1}.'.format(type(np.array(range(4))), type(probabilities)))

    # check gradient descent
    theta = runGradientDescentIteration(trainX, trainY, theta, alpha,
                                        lambdaFactor, tempParameter)
    print(
        'PASSED: runGradientDescentIteration appears to handle correct input type.'
    )
    if isinstance(theta, np.ndarray):
        if theta.shape == (10, 785):
            print(
                'PASSED: runGradientDescentIteration return value appears to return a numpy array of the right shape.'
            )
        else:
            print('FAILED: runGradientDescentIteration return value appears to return a numpy array but with the wrong size. ' + \
                    'Expected {0} but got {1}.'.format((10, 785), theta.shape))
    else:
        print('FAILED: runGradientDescentIteration appears to return the wrong type. ' + \
                'Expected {0} but got {1}'.format(type(np.array(range(4))), type(theta)))