def generate_scheme(self): # declaring target and instantiating optimization engine vx = self.implementation.add_input_variable("x", self.precision) Log.set_dump_stdout(True) Log.report(Log.Info, "\033[33;1m generating implementation scheme \033[0m") if self.debug_flag: Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m") # local overloading of RaiseReturn operation def ExpRaiseReturn(*args, **kwords): kwords["arg_value"] = vx kwords["function_name"] = self.function_name return RaiseReturn(*args, **kwords) C_m1 = Constant(-1, precision = self.precision) test_NaN_or_inf = Test(vx, specifier = Test.IsInfOrNaN, likely = False, debug = debug_multi, tag = "NaN_or_inf", precision = ML_Bool) test_NaN = Test(vx, specifier = Test.IsNaN, likely = False, debug = debug_multi, tag = "is_NaN", precision = ML_Bool) test_inf = Comparison(vx, 0, specifier = Comparison.Greater, debug = debug_multi, tag = "sign", precision = ML_Bool, likely = False); # Infnty input infty_return = Statement(ConditionBlock(test_inf, Return(FP_PlusInfty(self.precision)), Return(C_m1))) # non-std input (inf/nan) specific_return = ConditionBlock(test_NaN, Return(FP_QNaN(self.precision)), infty_return) # Over/Underflow Tests precision_emax = self.precision.get_emax() precision_max_value = S2**(precision_emax + 1) expm1_overflow_bound = ceil(log(precision_max_value + 1)) overflow_test = Comparison(vx, expm1_overflow_bound, likely = False, specifier = Comparison.Greater, precision = ML_Bool) overflow_return = Statement(Return(FP_PlusInfty(self.precision))) precision_emin = self.precision.get_emin_subnormal() precision_min_value = S2** precision_emin expm1_underflow_bound = floor(log(precision_min_value) + 1) underflow_test = Comparison(vx, expm1_underflow_bound, likely = False, specifier = Comparison.Less, precision = ML_Bool) underflow_return = Statement(Return(C_m1)) sollya_precision = {ML_Binary32: sollya.binary32, ML_Binary64: sollya.binary64}[self.precision] int_precision = {ML_Binary32: ML_Int32, ML_Binary64: ML_Int64}[self.precision] # Constants log_2 = round(log(2), sollya_precision, sollya.RN) invlog2 = round(1/log(2), sollya_precision, sollya.RN) log_2_cst = Constant(log_2, precision = self.precision) interval_vx = Interval(expm1_underflow_bound, expm1_overflow_bound) interval_fk = interval_vx * invlog2 interval_k = Interval(floor(inf(interval_fk)), ceil(sup(interval_fk))) log2_hi_precision = self.precision.get_field_size() - 6 log2_hi = round(log(2), log2_hi_precision, sollya.RN) log2_lo = round(log(2) - log2_hi, sollya_precision, sollya.RN) # Reduction unround_k = vx * invlog2 ik = NearestInteger(unround_k, precision = int_precision, debug = debug_multi, tag = "ik") k = Conversion(ik, precision = self.precision, tag = "k") red_coeff1 = Multiplication(k, log2_hi, precision = self.precision) red_coeff2 = Multiplication(Negation(k, precision = self.precision), log2_lo, precision = self.precision) pre_sub_mul = Subtraction(vx, red_coeff1, precision = self.precision) s = Addition(pre_sub_mul, red_coeff2, precision = self.precision) z = Subtraction(s, pre_sub_mul, precision = self.precision) t = Subtraction(red_coeff2, z, precision = self.precision) r = Addition(s, t, precision = self.precision) r.set_attributes(tag = "r", debug = debug_multi) r_interval = Interval(-log_2/S2, log_2/S2) local_ulp = sup(ulp(exp(r_interval), self.precision)) print("ulp: ", local_ulp) error_goal = S2**-1*local_ulp print("error goal: ", error_goal) # Polynomial Approx error_function = lambda p, f, ai, mod, t: dirtyinfnorm(f - p, ai) Log.report(Log.Info, "\033[33;1m Building polynomial \033[0m\n") poly_degree = sup(guessdegree(expm1(sollya.x), r_interval, error_goal) + 1) polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_horner_scheme poly_degree_list = range(0, poly_degree) precision_list = [self.precision] *(len(poly_degree_list) + 1) poly_object, poly_error = Polynomial.build_from_approximation_with_error(expm1(sollya.x), poly_degree, precision_list, r_interval, sollya.absolute, error_function = error_function) sub_poly = poly_object.sub_poly(start_index = 2) Log.report(Log.Info, "Poly : %s" % sub_poly) Log.report(Log.Info, "poly error : {} / {:d}".format(poly_error, int(sollya.log2(poly_error)))) pre_sub_poly = polynomial_scheme_builder(sub_poly, r, unified_precision = self.precision) poly = r + pre_sub_poly poly.set_attributes(tag = "poly", debug = debug_multi) exp_k = ExponentInsertion(ik, tag = "exp_k", debug = debug_multi, precision = self.precision) exp_mk = ExponentInsertion(-ik, tag = "exp_mk", debug = debug_multi, precision = self.precision) diff = 1 - exp_mk diff.set_attributes(tag = "diff", debug = debug_multi) # Late Tests late_overflow_test = Comparison(ik, self.precision.get_emax(), specifier = Comparison.Greater, likely = False, debug = debug_multi, tag = "late_overflow_test") overflow_exp_offset = (self.precision.get_emax() - self.precision.get_field_size() / 2) diff_k = ik - overflow_exp_offset exp_diff_k = ExponentInsertion(diff_k, precision = self.precision, tag = "exp_diff_k", debug = debug_multi) exp_oflow_offset = ExponentInsertion(overflow_exp_offset, precision = self.precision, tag = "exp_offset", debug = debug_multi) late_overflow_result = (exp_diff_k * (1 + poly)) * exp_oflow_offset - 1.0 late_overflow_return = ConditionBlock( Test(late_overflow_result, specifier = Test.IsInfty, likely = False), ExpRaiseReturn(ML_FPE_Overflow, return_value = FP_PlusInfty(self.precision)), Return(late_overflow_result) ) late_underflow_test = Comparison(k, self.precision.get_emin_normal(), specifier = Comparison.LessOrEqual, likely = False) underflow_exp_offset = 2 * self.precision.get_field_size() corrected_coeff = ik + underflow_exp_offset exp_corrected = ExponentInsertion(corrected_coeff, precision = self.precision) exp_uflow_offset = ExponentInsertion(-underflow_exp_offset, precision = self.precision) late_underflow_result = ( exp_corrected * (1 + poly)) * exp_uflow_offset - 1.0 test_subnormal = Test(late_underflow_result, specifier = Test.IsSubnormal, likely = False) late_underflow_return = Statement( ConditionBlock( test_subnormal, ExpRaiseReturn(ML_FPE_Underflow, return_value = late_underflow_result)), Return(late_underflow_result) ) # Reconstruction std_result = exp_k * ( poly + diff ) std_result.set_attributes(tag = "result", debug = debug_multi) result_scheme = ConditionBlock( late_overflow_test, late_overflow_return, ConditionBlock( late_underflow_test, late_underflow_return, Return(std_result) ) ) std_return = ConditionBlock( overflow_test, overflow_return, ConditionBlock( underflow_test, underflow_return, result_scheme) ) scheme = ConditionBlock( test_NaN_or_inf, Statement(specific_return), std_return ) return scheme
def generate_scheme(self): # declaring target and instantiating optimization engine vx = self.implementation.add_input_variable("x", self.precision) Log.set_dump_stdout(True) Log.report(Log.Info, "\033[33;1m generating implementation scheme \033[0m") if self.debug_flag: Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m") # local overloading of RaiseReturn operation def ExpRaiseReturn(*args, **kwords): kwords["arg_value"] = vx kwords["function_name"] = self.function_name if self.libm_compliant: return RaiseReturn(*args, precision=self.precision, **kwords) else: return Return(kwords["return_value"], precision=self.precision) test_nan_or_inf = Test(vx, specifier=Test.IsInfOrNaN, likely=False, debug=debug_multi, tag="nan_or_inf") test_nan = Test(vx, specifier=Test.IsNaN, debug=debug_multi, tag="is_nan_test") test_positive = Comparison(vx, 0, specifier=Comparison.GreaterOrEqual, debug=debug_multi, tag="inf_sign") test_signaling_nan = Test(vx, specifier=Test.IsSignalingNaN, debug=debug_multi, tag="is_signaling_nan") return_snan = Statement( ExpRaiseReturn(ML_FPE_Invalid, return_value=FP_QNaN(self.precision))) # return in case of infinity input infty_return = Statement( ConditionBlock( test_positive, Return(FP_PlusInfty(self.precision), precision=self.precision), Return(FP_PlusZero(self.precision), precision=self.precision))) # return in case of specific value input (NaN or inf) specific_return = ConditionBlock( test_nan, ConditionBlock( test_signaling_nan, return_snan, Return(FP_QNaN(self.precision), precision=self.precision)), infty_return) # return in case of standard (non-special) input # exclusion of early overflow and underflow cases precision_emax = self.precision.get_emax() precision_max_value = S2 * S2**precision_emax exp_overflow_bound = sollya.ceil(log(precision_max_value)) early_overflow_test = Comparison(vx, exp_overflow_bound, likely=False, specifier=Comparison.Greater) early_overflow_return = Statement( ClearException() if self.libm_compliant else Statement(), ExpRaiseReturn(ML_FPE_Inexact, ML_FPE_Overflow, return_value=FP_PlusInfty(self.precision))) precision_emin = self.precision.get_emin_subnormal() precision_min_value = S2**precision_emin exp_underflow_bound = floor(log(precision_min_value)) early_underflow_test = Comparison(vx, exp_underflow_bound, likely=False, specifier=Comparison.Less) early_underflow_return = Statement( ClearException() if self.libm_compliant else Statement(), ExpRaiseReturn(ML_FPE_Inexact, ML_FPE_Underflow, return_value=FP_PlusZero(self.precision))) # constant computation invlog2 = self.precision.round_sollya_object(1 / log(2), sollya.RN) interval_vx = Interval(exp_underflow_bound, exp_overflow_bound) interval_fk = interval_vx * invlog2 interval_k = Interval(floor(inf(interval_fk)), sollya.ceil(sup(interval_fk))) log2_hi_precision = self.precision.get_field_size() - ( sollya.ceil(log2(sup(abs(interval_k)))) + 2) Log.report(Log.Info, "log2_hi_precision: %d" % log2_hi_precision) invlog2_cst = Constant(invlog2, precision=self.precision) log2_hi = round(log(2), log2_hi_precision, sollya.RN) log2_lo = self.precision.round_sollya_object( log(2) - log2_hi, sollya.RN) # argument reduction unround_k = vx * invlog2 unround_k.set_attributes(tag="unround_k", debug=debug_multi) k = NearestInteger(unround_k, precision=self.precision, debug=debug_multi) ik = NearestInteger(unround_k, precision=self.precision.get_integer_format(), debug=debug_multi, tag="ik") ik.set_tag("ik") k.set_tag("k") exact_pre_mul = (k * log2_hi) exact_pre_mul.set_attributes(exact=True) exact_hi_part = vx - exact_pre_mul exact_hi_part.set_attributes(exact=True, tag="exact_hi", debug=debug_multi, prevent_optimization=True) exact_lo_part = -k * log2_lo exact_lo_part.set_attributes(tag="exact_lo", debug=debug_multi, prevent_optimization=True) r = exact_hi_part + exact_lo_part r.set_tag("r") r.set_attributes(debug=debug_multi) approx_interval = Interval(-log(2) / 2, log(2) / 2) approx_interval_half = approx_interval / 2 approx_interval_split = [ Interval(-log(2) / 2, inf(approx_interval_half)), approx_interval_half, Interval(sup(approx_interval_half), log(2) / 2) ] # TODO: should be computed automatically exact_hi_interval = approx_interval exact_lo_interval = -interval_k * log2_lo opt_r = self.optimise_scheme(r, copy={}) tag_map = {} self.opt_engine.register_nodes_by_tag(opt_r, tag_map) cg_eval_error_copy_map = { vx: Variable("x", precision=self.precision, interval=interval_vx), tag_map["k"]: Variable("k", interval=interval_k, precision=self.precision) } #try: if is_gappa_installed(): eval_error = self.gappa_engine.get_eval_error_v2( self.opt_engine, opt_r, cg_eval_error_copy_map, gappa_filename="red_arg.g") else: eval_error = 0.0 Log.report(Log.Warning, "gappa is not installed in this environnement") Log.report(Log.Info, "eval error: %s" % eval_error) local_ulp = sup(ulp(sollya.exp(approx_interval), self.precision)) # FIXME refactor error_goal from accuracy Log.report(Log.Info, "accuracy: %s" % self.accuracy) if isinstance(self.accuracy, ML_Faithful): error_goal = local_ulp elif isinstance(self.accuracy, ML_CorrectlyRounded): error_goal = S2**-1 * local_ulp elif isinstance(self.accuracy, ML_DegradedAccuracyAbsolute): error_goal = self.accuracy.goal elif isinstance(self.accuracy, ML_DegradedAccuracyRelative): error_goal = self.accuracy.goal else: Log.report(Log.Error, "unknown accuracy: %s" % self.accuracy) # error_goal = local_ulp #S2**-(self.precision.get_field_size()+1) error_goal_approx = S2**-1 * error_goal Log.report(Log.Info, "\033[33;1m building mathematical polynomial \033[0m\n") poly_degree = max( sup( guessdegree( expm1(sollya.x) / sollya.x, approx_interval, error_goal_approx)) - 1, 2) init_poly_degree = poly_degree error_function = lambda p, f, ai, mod, t: dirtyinfnorm(f - p, ai) polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_estrin_scheme #polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_horner_scheme while 1: Log.report(Log.Info, "attempting poly degree: %d" % poly_degree) precision_list = [1] + [self.precision] * (poly_degree) poly_object, poly_approx_error = Polynomial.build_from_approximation_with_error( expm1(sollya.x), poly_degree, precision_list, approx_interval, sollya.absolute, error_function=error_function) Log.report(Log.Info, "polynomial: %s " % poly_object) sub_poly = poly_object.sub_poly(start_index=2) Log.report(Log.Info, "polynomial: %s " % sub_poly) Log.report(Log.Info, "poly approx error: %s" % poly_approx_error) Log.report( Log.Info, "\033[33;1m generating polynomial evaluation scheme \033[0m") pre_poly = polynomial_scheme_builder( poly_object, r, unified_precision=self.precision) pre_poly.set_attributes(tag="pre_poly", debug=debug_multi) pre_sub_poly = polynomial_scheme_builder( sub_poly, r, unified_precision=self.precision) pre_sub_poly.set_attributes(tag="pre_sub_poly", debug=debug_multi) poly = 1 + (exact_hi_part + (exact_lo_part + pre_sub_poly)) poly.set_tag("poly") # optimizing poly before evaluation error computation #opt_poly = self.opt_engine.optimization_process(poly, self.precision, fuse_fma = fuse_fma) #opt_sub_poly = self.opt_engine.optimization_process(pre_sub_poly, self.precision, fuse_fma = fuse_fma) opt_poly = self.optimise_scheme(poly) opt_sub_poly = self.optimise_scheme(pre_sub_poly) # evaluating error of the polynomial approximation r_gappa_var = Variable("r", precision=self.precision, interval=approx_interval) exact_hi_gappa_var = Variable("exact_hi", precision=self.precision, interval=exact_hi_interval) exact_lo_gappa_var = Variable("exact_lo", precision=self.precision, interval=exact_lo_interval) vx_gappa_var = Variable("x", precision=self.precision, interval=interval_vx) k_gappa_var = Variable("k", interval=interval_k, precision=self.precision) #print "exact_hi interval: ", exact_hi_interval sub_poly_error_copy_map = { #r.get_handle().get_node(): r_gappa_var, #vx.get_handle().get_node(): vx_gappa_var, exact_hi_part.get_handle().get_node(): exact_hi_gappa_var, exact_lo_part.get_handle().get_node(): exact_lo_gappa_var, #k.get_handle().get_node(): k_gappa_var, } poly_error_copy_map = { exact_hi_part.get_handle().get_node(): exact_hi_gappa_var, exact_lo_part.get_handle().get_node(): exact_lo_gappa_var, } if is_gappa_installed(): sub_poly_eval_error = -1.0 sub_poly_eval_error = self.gappa_engine.get_eval_error_v2( self.opt_engine, opt_sub_poly, sub_poly_error_copy_map, gappa_filename="%s_gappa_sub_poly.g" % self.function_name) dichotomy_map = [ { exact_hi_part.get_handle().get_node(): approx_interval_split[0], }, { exact_hi_part.get_handle().get_node(): approx_interval_split[1], }, { exact_hi_part.get_handle().get_node(): approx_interval_split[2], }, ] poly_eval_error_dico = self.gappa_engine.get_eval_error_v3( self.opt_engine, opt_poly, poly_error_copy_map, gappa_filename="gappa_poly.g", dichotomy=dichotomy_map) poly_eval_error = max( [sup(abs(err)) for err in poly_eval_error_dico]) else: poly_eval_error = 0.0 sub_poly_eval_error = 0.0 Log.report(Log.Warning, "gappa is not installed in this environnement") Log.report(Log.Info, "stopping autonomous degree research") # incrementing polynomial degree to counteract initial decrementation effect poly_degree += 1 break Log.report(Log.Info, "poly evaluation error: %s" % poly_eval_error) Log.report(Log.Info, "sub poly evaluation error: %s" % sub_poly_eval_error) global_poly_error = None global_rel_poly_error = None for case_index in range(3): poly_error = poly_approx_error + poly_eval_error_dico[ case_index] rel_poly_error = sup( abs(poly_error / sollya.exp(approx_interval_split[case_index]))) if global_rel_poly_error == None or rel_poly_error > global_rel_poly_error: global_rel_poly_error = rel_poly_error global_poly_error = poly_error flag = error_goal > global_rel_poly_error if flag: break else: poly_degree += 1 late_overflow_test = Comparison(ik, self.precision.get_emax(), specifier=Comparison.Greater, likely=False, debug=debug_multi, tag="late_overflow_test") overflow_exp_offset = (self.precision.get_emax() - self.precision.get_field_size() / 2) diff_k = Subtraction( ik, Constant(overflow_exp_offset, precision=self.precision.get_integer_format()), precision=self.precision.get_integer_format(), debug=debug_multi, tag="diff_k", ) late_overflow_result = (ExponentInsertion( diff_k, precision=self.precision) * poly) * ExponentInsertion( overflow_exp_offset, precision=self.precision) late_overflow_result.set_attributes(silent=False, tag="late_overflow_result", debug=debug_multi, precision=self.precision) late_overflow_return = ConditionBlock( Test(late_overflow_result, specifier=Test.IsInfty, likely=False), ExpRaiseReturn(ML_FPE_Overflow, return_value=FP_PlusInfty(self.precision)), Return(late_overflow_result, precision=self.precision)) late_underflow_test = Comparison(k, self.precision.get_emin_normal(), specifier=Comparison.LessOrEqual, likely=False) underflow_exp_offset = 2 * self.precision.get_field_size() corrected_exp = Addition( ik, Constant(underflow_exp_offset, precision=self.precision.get_integer_format()), precision=self.precision.get_integer_format(), tag="corrected_exp") late_underflow_result = ( ExponentInsertion(corrected_exp, precision=self.precision) * poly) * ExponentInsertion(-underflow_exp_offset, precision=self.precision) late_underflow_result.set_attributes(debug=debug_multi, tag="late_underflow_result", silent=False) test_subnormal = Test(late_underflow_result, specifier=Test.IsSubnormal) late_underflow_return = Statement( ConditionBlock( test_subnormal, ExpRaiseReturn(ML_FPE_Underflow, return_value=late_underflow_result)), Return(late_underflow_result, precision=self.precision)) twok = ExponentInsertion(ik, tag="exp_ik", debug=debug_multi, precision=self.precision) #std_result = twok * ((1 + exact_hi_part * pre_poly) + exact_lo_part * pre_poly) std_result = twok * poly std_result.set_attributes(tag="std_result", debug=debug_multi) result_scheme = ConditionBlock( late_overflow_test, late_overflow_return, ConditionBlock(late_underflow_test, late_underflow_return, Return(std_result, precision=self.precision))) std_return = ConditionBlock( early_overflow_test, early_overflow_return, ConditionBlock(early_underflow_test, early_underflow_return, result_scheme)) # main scheme Log.report(Log.Info, "\033[33;1m MDL scheme \033[0m") scheme = ConditionBlock( test_nan_or_inf, Statement(ClearException() if self.libm_compliant else Statement(), specific_return), std_return) return scheme
def numeric_emulate(self, input_value): return expm1(input_value)