Пример #1
0
def main():
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
    # preprocessing class
    pre_process = MinMaxNormalization01()
    print('load train, validate, test data...')
    split = [43824, 8760, 8760]
    data, train_data, val_data, test_data = load_data(filename=['data/taxi/p_map.mat', 'data/taxi/d_map.mat'],
                                                      split=split)
    # data: [num, row, col, channel]
    print('preprocess train data...')
    pre_process.fit(train_data)

    if 'ResNet' in FLAGS.model:
        pre_index = max(FLAGS.closeness * 1, FLAGS.period * 7, FLAGS.trend * 7 * 24)
        all_timestamps = gen_timestamps(['2009', '2010', '2011', '2012', '2013', '2014', '2015'])
        data = pre_process.transform(data)
        # train_data = train_data
        train_data = data[:split[0]]
        val_data = data[split[0] - pre_index:split[0] + split[1]]
        test_data = data[split[0] + split[1] - pre_index:split[0] + split[1] + split[2]]
        del data
        # get train, validate, test timestamps
        train_timestamps = all_timestamps[:split[0]]
        val_timestamps = all_timestamps[split[0] - pre_index:split[0] + split[1]]
        test_timestamps = all_timestamps[split[0] + split[1] - pre_index:split[0] + split[1] + split[2]]
        # get x, y
        train_x, train_y = batch_data_cpt_ext(train_data, train_timestamps,
                                              batch_size=FLAGS.batch_size, close=FLAGS.closeness, period=FLAGS.period,
                                              trend=FLAGS.trend)
        val_x, val_y = batch_data_cpt_ext(val_data, val_timestamps,
                                          batch_size=FLAGS.batch_size, close=FLAGS.closeness, period=FLAGS.period,
                                          trend=FLAGS.trend)
        test_x, test_y = batch_data_cpt_ext(test_data, test_timestamps,
                                            batch_size=FLAGS.batch_size, close=FLAGS.closeness, period=FLAGS.period,
                                            trend=FLAGS.trend)
        train = {'x': train_x, 'y': train_y}
        val = {'x': val_x, 'y': val_y}
        test = {'x': test_x, 'y': test_y}
        nb_flow = train_data.shape[-1]
        row = train_data.shape[1]
        col = train_data.shape[2]
        if FLAGS.model == 'AttResNet':
            print('k-means to cluster...')
            model_path = 'taxi-results/model_save/AttResNet/'
            log_path = 'taxi-results/log/AttResNet/'
            if FLAGS.pre_saved_cluster:
                cluster_centroid = np.load(model_path + 'cluster_centroid.npy')
            else:
                vector_data = np.reshape(train_data, (train_data.shape[0], -1))
                kmeans = KMeans(n_clusters=FLAGS.cluster_num, init='random', n_init=FLAGS.kmeans_run_num,
                                tol=0.00000001).fit(vector_data)
                cluster_centroid = kmeans.cluster_centers_
                cluster_centroid = np.reshape(cluster_centroid,
                                              (-1, train_data.shape[1], train_data.shape[2], train_data.shape[3]))
                if not os.path.exists(model_path):
                    os.makedirs(model_path)
                if not os.path.exists(log_path):
                    os.makedirs(log_path)
                np.save(model_path + 'cluster_centroid.npy', cluster_centroid)
            print('build AttResNet model...')
            model = AttResNet(input_conf=[[FLAGS.closeness, nb_flow, row, col], [FLAGS.period, nb_flow, row, col],
                                          [FLAGS.trend, nb_flow, row, col], [8]],
                              att_inputs=cluster_centroid, att_nodes=FLAGS.att_nodes,
                              att_layer=['conv', 'conv'],
                              att_layer_param=[[[3, 3], [1, 1, 1, 1], 8], [[3, 3], [1, 1, 1, 1], 2]],
                              batch_size=FLAGS.batch_size,
                              layer=['conv', 'res_net', 'conv'],
                              layer_param=[[[3, 3], [1, 1, 1, 1], 64],
                                           [3, [[[3, 3], [1, 1, 1, 1], 64], [[3, 3], [1, 1, 1, 1], 64]]],
                                           [[3, 3], [1, 1, 1, 1], 2]]
                              )
        else:
            print('build ResNet model...')
            model_path = 'taxi-results/model_save/ResNet/'
            log_path = 'taxi-results/log/ResNet/'
            model = ResNet(input_conf=[[FLAGS.closeness, nb_flow, row, col], [FLAGS.period, nb_flow, row, col],
                                       [FLAGS.trend, nb_flow, row, col], [8]], batch_size=FLAGS.batch_size,
                           layer=['conv', 'res_net', 'conv'],
                           layer_param=[[[3, 3], [1, 1, 1, 1], 64],
                                        [3, [[[3, 3], [1, 1, 1, 1], 64], [[3, 3], [1, 1, 1, 1], 64]]],
                                        [[3, 3], [1, 1, 1, 1], 2]]
                           )
        print('model solver...')
        solver = ModelSolver(model, train, val, preprocessing=pre_process,
                             n_epochs=FLAGS.n_epochs,
                             batch_size=FLAGS.batch_size,
                             update_rule=FLAGS.update_rule,
                             learning_rate=FLAGS.lr, save_every=FLAGS.save_every,
                             pretrained_model=FLAGS.pretrained_model, model_path=model_path,
                             test_model='taxi-results/model_save/ResNet/model-' + str(FLAGS.n_epochs),
                             log_path=log_path,
                             cross_val=False, cpt_ext=True)
        if FLAGS.train:
            print('begin training...')
            test_n = {'data': test_data, 'timestamps': test_timestamps}
            _, test_prediction = solver.train(test, test_n, output_steps=FLAGS.output_steps)
            # get test_target and test_prediction
            i = pre_index
            test_target = []
            while i < len(test_data) - FLAGS.output_steps:
                test_target.append(test_data[i:i + FLAGS.output_steps])
                i += 1
            test_target = np.asarray(test_target)
        if FLAGS.test:
            print('begin testing for predicting next 1 step')
            solver.test(test)
            print('begin testing for predicting next' + str(FLAGS.output_steps) + 'steps')
            test_n = {'data': test_data, 'timestamps': test_timestamps}
            solver.test_1_to_n(test_n)
    else:
        train_data = pre_process.transform(train_data)
        train_x, train_y = batch_data(data=train_data, batch_size=FLAGS.batch_size,
                                      input_steps=FLAGS.input_steps, output_steps=FLAGS.output_steps)
        val_data = pre_process.transform(val_data)
        val_x, val_y = batch_data(data=val_data, batch_size=FLAGS.batch_size,
                                  input_steps=FLAGS.input_steps, output_steps=FLAGS.output_steps)
        test_data = pre_process.transform(test_data)
        test_x, test_y = batch_data(data=test_data, batch_size=FLAGS.batch_size,
                                    input_steps=FLAGS.input_steps, output_steps=FLAGS.output_steps)
        train = {'x': train_x, 'y': train_y}
        val = {'x': val_x, 'y': val_y}
        test = {'x': test_x, 'y': test_y}
        input_dim = [train_data.shape[1], train_data.shape[2], train_data.shape[3]]
        if FLAGS.model == 'ConvLSTM':
            print('build ConvLSTM model...')
            model = ConvLSTM(input_dim=input_dim, batch_size=FLAGS.batch_size,
                             layer={'encoder': ['conv', 'conv', 'conv_lstm', 'conv_lstm'],
                                    'decoder': ['conv_lstm', 'conv_lstm', 'conv', 'conv']},
                             layer_param={'encoder': [[[3, 3], [1, 2, 2, 1], 8],
                                                      [[3, 3], [1, 2, 2, 1], 16],
                                                      [[16, 16], [3, 3], 64],
                                                      [[16, 16], [3, 3], 64]],
                                          'decoder': [[[16, 16], [3, 3], 64],
                                                      [[16, 16], [3, 3], 64],
                                                      [[3, 3], [1, 2, 2, 1], 8],
                                                      [[3, 3], [1, 2, 2, 1], 2]]},
                             input_steps=10, output_steps=10)
            print('model solver...')
            solver = ModelSolver(model, train, val, preprocessing=pre_process,
                                 n_epochs=FLAGS.n_epochs,
                                 batch_size=FLAGS.batch_size,
                                 update_rule=FLAGS.update_rule,
                                 learning_rate=FLAGS.lr, save_every=FLAGS.save_every,
                                 pretrained_model=FLAGS.pretrained_model,
                                 model_path='taxi-results/model_save/ConvLSTM/',
                                 test_model='taxi-results/model_save/ConvLSTM/model-' + str(FLAGS.n_epochs),
                                 log_path='taxi-results/log/ConvLSTM/')
        elif 'AttConvLSTM' in FLAGS.model:
            # train_data: [num, row, col, channel]
            if FLAGS.use_ae:
                # auto-encoder to cluster train_data
                print('auto-encoder to cluster...')
                model_path = 'taxi-results/model_save/AEAttConvLSTM/'
                log_path = 'taxi-results/log/AEAttConvLSTM/'
                if FLAGS.pre_saved_cluster:
                    cluster_centroid = np.load(model_path + 'cluster_centroid.npy')
                else:
                    ae = AutoEncoder(input_dim=input_dim, z_dim=[16, 16, 16],
                                     layer={'encoder': ['conv', 'conv'],
                                            'decoder': ['conv', 'conv']},
                                     layer_param={'encoder': [[[3, 3], [1, 2, 2, 1], 8],
                                                              [[3, 3], [1, 2, 2, 1], 16]],
                                                  'decoder': [[[3, 3], [1, 2, 2, 1], 8],
                                                              [[3, 3], [1, 2, 2, 1], 2]]},
                                     model_save_path=model_path,
                                     batch_size=FLAGS.batch_size)
                    if FLAGS.ae_train:
                        ae.train(train_data, batch_size=FLAGS.batch_size, learning_rate=FLAGS.lr, n_epochs=20,
                                 pretrained_model=FLAGS.ae_pretrained_model)
                    train_z_data = ae.get_z(train_data, pretrained_model=FLAGS.ae_pretrained_model)
                    print(train_z_data.shape)
                    # k-means to cluster train_z_data
                    vector_data = np.reshape(train_z_data, (train_z_data.shape[0], -1))
                    kmeans = KMeans(n_clusters=FLAGS.cluster_num, init='random', n_init=FLAGS.kmeans_run_num,
                                    tol=0.00000001).fit(vector_data)
                    cluster_centroid = kmeans.cluster_centers_
                    print(np.array(cluster_centroid).shape)
                    # reshape to [cluster_num, row, col, channel]
                    cluster_centroid = np.reshape(cluster_centroid,
                                                  (-1, train_z_data.shape[1], train_z_data.shape[2],
                                                   train_z_data.shape[3]))
                    # decoder to original space
                    cluster_centroid = ae.get_y(cluster_centroid, pretrained_model=FLAGS.ae_pretrained_model)
                    print(cluster_centroid.shape)
                    np.save(model_path + 'cluster_centroid.npy', cluster_centroid)
            else:
                # k-means to cluster train_data
                print('k-means to cluster...')
                model_path = 'taxi-results/model_save/' + FLAGS.model + '/'
                log_path = 'taxi-results/log/' + FLAGS.model + '/'
                if not os.path.exists(model_path):
                    os.makedirs(model_path)
                if not os.path.exists(log_path):
                    os.makedirs(log_path)
                if FLAGS.pre_saved_cluster:
                    cluster_centroid = np.load(model_path + 'cluster_centroid.npy')
                else:
                    vector_data = np.reshape(train_data, (train_data.shape[0], -1))
                    # init_vectors = vector_data[:FLAGS.cluster_num, :]
                    # cluster_centroid = init_vectors
                    kmeans = KMeans(n_clusters=FLAGS.cluster_num, init='random', n_init=FLAGS.kmeans_run_num,
                                    tol=0.00000001).fit(vector_data)
                    cluster_centroid = kmeans.cluster_centers_
                    # reshape to [cluster_num, row, col, channel]
                    cluster_centroid = np.reshape(cluster_centroid,
                                                  (-1, train_data.shape[1], train_data.shape[2], train_data.shape[3]))
                    np.save(model_path + 'cluster_centroid.npy', cluster_centroid)
            # build model
            print('build ' + FLAGS.model + ' model...')
            if FLAGS.model == 'AttConvLSTM':
                model = AttConvLSTM(input_dim=input_dim,
                                    att_inputs=cluster_centroid, att_nodes=FLAGS.att_nodes,
                                    batch_size=FLAGS.batch_size,
                                    layer={'encoder': ['conv', 'conv', 'conv_lstm', 'conv_lstm'],
                                           'decoder': ['conv_lstm', 'conv_lstm', 'conv', 'conv'],
                                           'attention': ['conv', 'conv']},
                                    layer_param={'encoder': [[[3, 3], [1, 2, 2, 1], 8],
                                                             [[3, 3], [1, 2, 2, 1], 16],
                                                             [[16, 16], [3, 3], 64],
                                                             [[16, 16], [3, 3], 64]],
                                                 'decoder': [[[16, 16], [3, 3], 64],
                                                             [[16, 16], [3, 3], 64],
                                                             [[3, 3], [1, 2, 2, 1], 8],
                                                             [[3, 3], [1, 2, 2, 1], 2]],
                                                 'attention': [[[3, 3], [1, 2, 2, 1], 8],
                                                               [[3, 3], [1, 2, 2, 1], 16]]},
                                    input_steps=10, output_steps=10)
            elif FLAGS.model == 'MultiAttConvLSTM':
                model = MultiAttConvLSTM(input_dim=input_dim,
                                         att_inputs=cluster_centroid, att_nodes=FLAGS.att_nodes,
                                         batch_size=FLAGS.batch_size,
                                         layer={'encoder': ['conv', 'conv', 'conv_lstm', 'conv_lstm'],
                                                'decoder': ['conv_lstm', 'conv_lstm', 'conv', 'conv'],
                                                'attention': ['conv', 'conv']},
                                         layer_param={'encoder': [[[3, 3], [1, 2, 2, 1], 8],
                                                                  [[3, 3], [1, 2, 2, 1], 16],
                                                                  [[16, 16], [3, 3], 64],
                                                                  [[16, 16], [3, 3], 64]],
                                                      'decoder': [[[16, 16], [3, 3], 64],
                                                                  [[16, 16], [3, 3], 64],
                                                                  [[3, 3], [1, 2, 2, 1], 8],
                                                                  [[3, 3], [1, 2, 2, 1], 2]],
                                                      'attention': [[[3, 3], [1, 2, 2, 1], 8],
                                                                    [[3, 3], [1, 2, 2, 1], 16]]},
                                         input_steps=10, output_steps=10)
            print('model solver...')
            solver = ModelSolver(model, train, val, preprocessing=pre_process,
                                 n_epochs=FLAGS.n_epochs,
                                 batch_size=FLAGS.batch_size,
                                 update_rule=FLAGS.update_rule,
                                 learning_rate=FLAGS.lr, save_every=FLAGS.save_every,
                                 pretrained_model=FLAGS.pretrained_model, model_path=model_path,
                                 test_model=model_path + 'model-' + str(FLAGS.n_epochs), log_path=log_path)
        if FLAGS.train:
            print('begin training...')
            test_prediction, _ = solver.train(test)
            test_target = np.asarray(test_y)
        if FLAGS.test:
            print('test trained model...')
            solver.test_model = solver.model_path + FLAGS.pretrained_model
            test_prediction = solver.test(test)
            test_target = np.asarray(test_y)
    np.save('taxi-results/results/'+FLAGS.model+'/test_target.npy', test_target)
    np.save('taxi-results/results/'+FLAGS.model+'/test_prediction.npy', test_prediction)
    print(test_prediction.shape)
Пример #2
0
def main():
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
    # preprocessing class
    pre_process = MinMaxNormalization01()
    print('load train, validate, test data...')
    split = [17520, 4416, 4368]
    data, train_data, val_data, test_data = load_npy_data(
        filename=['data/citybike/p_map.npy', 'data/citybike/d_map.npy'],
        split=split)
    # data: [num, row, col, channel]
    print('preprocess train data...')
    pre_process.fit(train_data)

    train_data = pre_process.transform(train_data)
    train_x, train_y = batch_data(data=train_data,
                                  batch_size=FLAGS.batch_size,
                                  input_steps=FLAGS.input_steps,
                                  output_steps=FLAGS.output_steps)
    val_data = pre_process.transform(val_data)
    val_x, val_y = batch_data(data=val_data,
                              batch_size=FLAGS.batch_size,
                              input_steps=FLAGS.input_steps,
                              output_steps=FLAGS.output_steps)
    test_data = pre_process.transform(test_data)
    test_x, test_y = batch_data(data=test_data,
                                batch_size=FLAGS.batch_size,
                                input_steps=FLAGS.input_steps,
                                output_steps=FLAGS.output_steps)
    train = {'x': train_x, 'y': train_y}
    val = {'x': val_x, 'y': val_y}
    test = {'x': test_x, 'y': test_y}
    input_dim = [train_data.shape[1], train_data.shape[2], train_data.shape[3]]
    if 'AttConvLSTM' in FLAGS.model:
        # train_data: [num, row, col, channel]
        model_path = 'citybike-results/model_save/' + FLAGS.model + '/'
        log_path = 'citybike-results/log/' + FLAGS.model + '/'
        if not os.path.exists(model_path):
            os.makedirs(model_path)
        if not os.path.exists(log_path):
            os.makedirs(log_path)
        if FLAGS.pre_saved_cluster:
            cluster_centroid = np.load(model_path + 'cluster_centroid.npy')
        else:
            vector_data = np.reshape(train_data, (train_data.shape[0], -1))
            cluster_centroid_1 = None
            cluster_centroid_2 = None
            cluster_centroid = None
            if FLAGS.kmeans_cluster:
                print('k-means to cluster...')
                kmeans = KMeans(n_clusters=FLAGS.cluster_num,
                                init='random',
                                n_init=FLAGS.kmeans_run_num,
                                tol=0.00000001).fit(vector_data)
                cluster_centroid_1 = kmeans.cluster_centers_
            if FLAGS.average_cluster:
                print('average cluster...')
                if FLAGS.average_cluster == 24:
                    cluster_centroid_2 = average_cluster_24(vector_data)
                elif FLAGS.average_cluster == 48:
                    cluster_centroid_2 = average_cluster_48(vector_data)
            if cluster_centroid_1 is not None:
                cluster_centroid = cluster_centroid_1
            if cluster_centroid_2 is not None:
                if cluster_centroid is not None:
                    cluster_centroid = np.concatenate(
                        (cluster_centroid_1, cluster_centroid_2), axis=0)
                else:
                    cluster_centroid = cluster_centroid_2
            # reshape to [cluster_num, row, col, channel]
            cluster_centroid = np.reshape(
                cluster_centroid, (-1, train_data.shape[1],
                                   train_data.shape[2], train_data.shape[3]))
            np.save(model_path + 'cluster_centroid.npy', cluster_centroid)
        # build model
        print 'build ' + FLAGS.model + ' model...'
        if FLAGS.model == 'AttConvLSTM':
            model = AttConvLSTM(input_dim=input_dim,
                                att_inputs=cluster_centroid,
                                att_nodes=FLAGS.att_nodes,
                                batch_size=FLAGS.batch_size,
                                layer={
                                    'encoder':
                                    ['conv', 'conv', 'conv_lstm', 'conv_lstm'],
                                    'decoder':
                                    ['conv_lstm', 'conv_lstm', 'conv', 'conv'],
                                    'attention': ['conv', 'conv']
                                },
                                layer_param={
                                    'encoder': [[[3, 3], [1, 1, 1, 1], 8],
                                                [[3, 3], [1, 1, 1, 1], 16],
                                                [[16, 16], [3, 3], 64],
                                                [[16, 16], [3, 3], 64]],
                                    'decoder': [[[16, 16], [3, 3], 64],
                                                [[16, 16], [3, 3], 64],
                                                [[3, 3], [1, 1, 1, 1], 8],
                                                [[3, 3], [1, 1, 1, 1], 2]],
                                    'attention': [[[3, 3], [1, 1, 1, 1], 8],
                                                  [[3, 3], [1, 1, 1, 1], 16]]
                                },
                                input_steps=10,
                                output_steps=10)
        elif FLAGS.model == 'MultiAttConvLSTM':
            model = MultiAttConvLSTM(
                input_dim=input_dim,
                att_inputs=cluster_centroid,
                att_nodes=FLAGS.att_nodes,
                batch_size=FLAGS.batch_size,
                layer={
                    'encoder': ['conv', 'conv', 'conv_lstm', 'conv_lstm'],
                    'decoder': ['conv_lstm', 'conv_lstm', 'conv', 'conv'],
                    'attention': ['conv', 'conv']
                },
                layer_param={
                    'encoder': [[[3, 3], [1, 1, 1, 1], 8],
                                [[3, 3], [1, 1, 1, 1], 16],
                                [[16, 16], [3, 3], 64], [[16, 16], [3, 3],
                                                         64]],
                    'decoder': [[[16, 16], [3, 3], 64], [[16, 16], [3, 3], 64],
                                [[3, 3], [1, 1, 1, 1], 8],
                                [[3, 3], [1, 1, 1, 1], 2]],
                    'attention': [[[3, 3], [1, 1, 1, 1], 8],
                                  [[3, 3], [1, 1, 1, 1], 16]]
                },
                input_steps=10,
                output_steps=10)
        print('model solver...')
        solver = ModelSolver(model,
                             train,
                             val,
                             preprocessing=pre_process,
                             n_epochs=FLAGS.n_epochs,
                             batch_size=FLAGS.batch_size,
                             update_rule=FLAGS.update_rule,
                             learning_rate=FLAGS.lr,
                             save_every=FLAGS.save_every,
                             pretrained_model=FLAGS.pretrained_model,
                             model_path=model_path,
                             test_model=model_path + 'model-' +
                             str(FLAGS.n_epochs),
                             log_path=log_path)
    if FLAGS.train:
        print('begin training...')
        test_prediction, _ = solver.train(test)
        test_target = np.asarray(test_y)
    if FLAGS.test:
        print('test trained model...')
        solver.test_model = solver.model_path + FLAGS.pretrained_model
        test_prediction = solver.test(test)
        test_target = np.asarray(test_y)
    np.save('citybike-results/results/' + FLAGS.model + '/test_target.npy',
            test_target)
    np.save('citybike-results/results/' + FLAGS.model + '/test_prediction.npy',
            test_prediction)