Пример #1
0
def example_2_antichain_algorithm():
    """
    Solves a simple example.
    """
    g = io.load_from_file("assets/strong parity/example_2.txt")
    (a, c) = sp.strong_parity_antichain_based(g, 1)
    return ops.are_lists_equal(a, [1, 3, 4, 2]) and ops.are_lists_equal(c, [])
Пример #2
0
def worstcase2_antichain_algorithm():
    """
    Solves a worst case graph G_n for n = 2.
    """
    g = io.load_from_file("assets/strong parity/worstcase_2.txt")
    (a, c) = sp.strong_parity_antichain_based(g, 0)
    return ops.are_lists_equal(a, []) and ops.are_lists_equal(
        c, [6, 8, 9, 7, 5, 4, 0, 2, 1, 3])
Пример #3
0
def worstcase1_antichain_algorithm():
    """
    Solves a worst case graph G_n for n = 1.
    """
    g = io.load_from_file("assets/strong parity/worstcase_1.txt")
    (a, c) = sp.strong_parity_antichain_based(g, 0)
    return ops.are_lists_equal(a, [1, 3, 4, 2, 0]) and ops.are_lists_equal(
        c, [])
Пример #4
0
def figure56_antichain_algorithm():
    """
    Solves the strong parity game from figure 5.6.
    """
    fig56_graph = io.load_from_file("assets/strong parity/figure56.txt")
    (a, c) = sp.strong_parity_antichain_based(fig56_graph, 1)
    return ops.are_lists_equal(a, [2, 4, 1, 6]) and ops.are_lists_equal(
        c, [5, 3])
Пример #5
0
def solver():
    """
    Takes appropriate actions according to the chosen options (using command_line_handler() output).
    """

    # Parsing the command line arguments
    args = command_line_handler()

    if args.mode == "solve":

        """ ----- Solving mode ----- """
        if args.gp:
            g = tools.load_generalized_from_file(args.inputFile)  # we have a generalized parity game arena
        else:
            g = tools.load_from_file(args.inputFile)  # loading game from the input file
        player = 0  # default player is 0, so solution comes as (W_0,sigma_0), (W_1,sigma_1) or (W_0, W_1)

        # Reachability (target and player is set)
        if args.target is not None:
            player = int(args.target[0])  # getting player (as int), replacing default player
            target = map(int, args.target[1].split(","))  # getting node ids in target (transforming them into int)
            solution = reachability.reachability_solver(g, target, player)  # calling reachability solver
            ops.print_solution(solution, player)  # printing the solution

        # Safety (safe set provided)
        if args.safe is not None:
            player = 1 # the player with the reachability objective (to write the solution later)
            safe_set = map(int, args.safe[0].split(","))  # getting node ids in safe set (transforming them into int)
            target_set = []
            # adds every node not in the safe set to the target set
            for node in g.get_nodes():
                if not (node in safe_set):
                    target_set.append(node)
            # the solution comes out as (W_1,sigma_1), (W_0,sigma_0)
            solution = reachability.reachability_solver(g, target_set, 1)  # calling reachability solver with target set for player 1 (2)
            ops.print_solution(solution, 1)  # printing the solution, player 1 (2) has the reachability objective

        # Weak parity
        elif args.wp:
            solution = weakparity.weak_parity_solver(g)  # calling weak parity solver on the game
            ops.print_solution(solution, player)  # printing the solution

        # Strong parity (an algorithm is chosen)
        elif args.parity_algorithm is not None:
            if (args.parity_algorithm == 'recursive'):
                solution = strongparity.strong_parity_solver(g)  # calling recursive algorithm for parity games
                ops.print_solution(solution, player)  # printing the solution (with strategy)
            elif (args.parity_algorithm == 'safety'):
                solution = strongparity.reduction_to_safety_parity_solver(g)  # calling reduction to safety algorithm
                ops.print_winning_regions(solution[0], solution[1]) # printing the solution (without strategy)
            elif (args.parity_algorithm == 'antichain'):
                # calling antichain-based algorithm, assumes indexes start with 1
                solution = strongparity.strong_parity_antichain_based(g,1)
                ops.print_winning_regions(solution[0], solution[1]) # printing the solution (without strategy)
            else:
                # this should not happen
                solution = None

        # Generalized parity
        elif args.gp:
            solution = generalizedparity.generalized_parity_solver(g)  # calling classical algorithm for generalized parity games
            ops.print_winning_regions(solution[0], solution[1])  # printing the solution (without strategy)

        # If output option is chosen and the algorithm is the classical algo for generalized parity games, use special
        # function dedicated to writing solution of generalized parity games (need to consider several priorities)
        if (args.outputFile is not None) and args.gp:
            tools.write_generalized_solution_to_file(g, solution[0], solution[1], args.outputFile)

        # If output option is chosen and the algorithm is the reduction to safety algorithm for parity games or the
        # antichain-based algorithm for parity games then the output is only the winning regions, not the strategies
        elif (args.outputFile is not None) and (args.parity_algorithm == 'safety' or args.parity_algorithm == 'antichain'):
            tools.write_solution_to_file_no_strategies(g, solution[0], solution[1], args.outputFile)

        # Else the regular regions + strategies are output
        elif args.outputFile is not None:
            tools.write_solution_to_file(g, solution, player, args.outputFile)

    elif args.mode == "bench":
        """ ----- Benchmark mode ----- """
        max = args.max
        step = args.step
        rep = args.repetitions
        plot = args.outputPlot is not None

        # Reachability
        if args.reachability_type is not None:
            if args.reachability_type == 'complete0':
                r_bench.benchmark(max, generators.complete_graph, [1], 0, iterations=rep, step=step, plot=plot,
                                  regression=True, order=2, path=args.outputPlot,
                                  title=u"Graphes complets de taille 1 à " + str(max))
            elif args.reachability_type == 'complete1':
                r_bench.benchmark(max, generators.complete_graph, [1], 1, iterations=rep, step=step, plot=plot,
                                  regression=True, order=2, path=args.outputPlot,
                                  title=u"Graphes complets de taille 1 à " + str(max))
            elif args.reachability_type == 'worstcase':
                r_bench.benchmark(max, generators.reachability_worst_case, [1], 0, iterations=rep, step=step,
                                  plot=plot, regression=True, order=2, path=args.outputPlot,
                                  title=u"Graphes 'pire cas' de taille 1 à " + str(max))

        # Weak parity
        elif args.weakparity_type is not None:
            if args.weakparity_type == 'complete':
                wp_bench.benchmark(max, generators.complete_graph_weakparity, iterations=rep, step=step, plot=plot,
                                   regression=True, order=2, path=args.outputPlot,
                                   title=u"Graphes complets de taille 1 à " + str(max))
            elif args.weakparity_type == 'worstcase':
                wp_bench.benchmark(max, generators.weak_parity_worst_case, iterations=rep, step=step, plot=plot,
                                   regression=True, order=3, path=args.outputPlot,
                                   title=u"Graphes 'pire cas' de taille 1 à " + str(max))

        # parity
        elif args.parity_type is not None:
            if args.parity_type == 'recursive-random':
                sp_bench.benchmark_random(max, iterations=rep, step=step, plot=plot,path=args.outputPlot)
            elif args.parity_type == 'safety-random':
                sp_bench.benchmark_random_reduction(max, iterations=rep, step=step, plot=plot,path=args.outputPlot)
            elif args.parity_type == 'antichain-random':
                sp_bench.benchmark_random_antichain_based(max, iterations=rep, step=step, plot=plot,path=args.outputPlot)
            elif args.parity_type == 'recursive-worstcase':
                sp_bench.benchmark_worst_case(max, iterations=rep, step=step, plot=plot, path=args.outputPlot)
            elif args.parity_type == 'safety-worstcase':
                sp_bench.benchmark_worst_case_reduction(max, iterations=rep, step=step, plot=plot,path=args.outputPlot)
            elif args.parity_type == 'antichain-worstcase':
                sp_bench.benchmark_worst_case_antichain_based(max, iterations=rep, step=step, plot=plot,path=args.outputPlot)

        # generalized parity
        else:
            gp_bench.benchmark_random_k_functions(max,3,iterations=rep, step=step, plot=plot, path=args.outputPlot)

    elif args.mode == "test":
        sp_test_result = sp_test.launch_tests()
        wp_test_result = wp_test.launch_tests()
        r_test_result = r_test.launch_tests()
        gp_test_result = gp_test.launch_tests()
        if (sp_test_result and wp_test_result and r_test_result and gp_test_result):
            print "All tests passed with success"
        else:
            print "Some tests failed"
def benchmark_worst_case_antichain_based(n,
                                         iterations=3,
                                         step=10,
                                         plot=False,
                                         path=""):
    """
    Benchmarks the antichain-based algorithm for parity games using the worst case generator which yields an
    exponential complexity for the recursive algorithm. Calls strong parity solver on games generated using the worst
    case generator function. Games of size 5 to 5*n are solved and a timer records the time taken to get the solution.
    The solver can be timed several times and the minimum value is selected using optional parameter iterations (to
    avoid recording time spikes and delays due to system load). The result can be plotted using matplotlib.
    :param n: number of nodes in generated graph (nodes is 5*n due to construction).
    :param iterations: number of times the algorithm is timed (default is 3).
    :param step: step to be taken in the generation.
    :param plot: if True, plots the data using matplotlib.
    :param path: path to the file in which to write the result.
    """

    y = []  # list for the time recordings
    n_ = []  # list for the x values (5 to 5n)

    total_time = 0  # accumulator to record total time

    nbr_generated = 0  # conserving the number of generated mesures (used to get the index of a mesure)

    chrono = timer.Timer(verbose=False)  # Timer object

    info = "Time to solve (s)"  # info about the current benchmark

    # print first line of output
    print u"Generator".center(40) + "|" + u"Nodes (n)".center(12) + "|" + info.center(40) + "\n" + \
          "-" * 108

    # games generated are size 1 to n
    for i in range(1, n + 1, step):
        temp = []  # temp list for #iterations recordings
        g = generators.strong_parity_worst_case(i)  # generated game

        # #iterations calls to the solver are timed
        for j in range(iterations):
            with chrono:
                strong_parity_antichain_based(
                    g,
                    1)  # solver call, this worst case starts indexing with 1
            temp.append(chrono.interval)  # add time recording

        min_recording = min(temp)
        y.append(
            min_recording)  # get the minimum out of #iterations recordings
        n_.append(5 * i)
        total_time += min_recording

        print "Worst-case graph".center(40) + "|" + str(i * 5).center(12) + "|" \
              + str(y[nbr_generated]).center(40) + "\n" + "-" * 108

        nbr_generated += 1  # updating the number of generated mesures

        # at the end, print total time
    print "-" * 108 + "\n" + "Total (s)".center(40) + "|" + "#".center(12) + "|" + \
          str(total_time).center(40) + "\n" + "-" * 108 + "\n"

    if plot:
        plt.grid(True)
        plt.title(u"Worst-case graph of size 5 to " + str(5 * n))
        plt.xlabel(u'number of nodes')
        plt.ylabel(u'time (s)')
        # plt.yscale("log") allows logatithmic y-axis
        points, = plt.plot(n_, y, 'g.', label=u"Execution time")
        plt.legend(loc='upper left', handles=[points])
        plt.savefig(path, bbox_inches='tight')
        plt.clf()
        plt.close()