Пример #1
0
def compare(u, U_adv, trained_model, roe=roe):
    f = lambda x : U_adv*x
    fprime = lambda x : U_adv
    
    u_for_ke = np.copy(u[1:-1])
    u_for_roe = np.copy(u)

    u_pred_next = np.zeros_like(u[1:-1]) 
    u_next = np.zeros_like(u) 
    
    for i in range(0, 200, 5) :
        for j in range(1, 249) :
            u_next[j] = solvers.timestep_roe(u_for_roe, j, 0.4, f, fprime)
        u_next[0] = u_next[-2]
        u_next[-1] = u_next[2]
        
        u_pred_next = trained_model.predict(u_for_ke.reshape(1, 248, 1))
        
        plt.figure("Evolution comparaison")
        plt.clf()
#        plt.plot(roe.line_x, u_next, label="true next state it = %d" %(i+1))
        plt.plot(roe.line_x[1:-1], u_pred_next.ravel(), label="Prediction", fillstyle='none', linestyle='-.', marker='o' )
        plt.legend()
        plt.pause(0.1)
        
        u_for_ke = u_pred_next.ravel()
        u_for_roe = u_next 
Пример #2
0
    def true_solve(self, u):
        u_next = np.zeros_like(u)
        for j in range(1, len(self.line_x) - 1):
            u_next[j] = solvers.timestep_roe(u, j, self.CFL, self.f,
                                             self.fprime)
        u_next[0] = u_next[-2]
        u_next[-1] = u_next[2]

        return u_next
Пример #3
0
def action_with_burger(state):
    """
    On utilise Burger comme prediction
    """
    next_state = np.zeros_like(state)

    for j in range(1, len(state) - 1):
        next_state[j] = solvers.timestep_roe(state, j, r, f, fprime)
    next_state[0] = next_state[-2]
    next_state[-1] = next_state[1]
    return next_state
Пример #4
0
def action_with_burger(state, r, f, fprime):
    """
    With one iniitial state, we predict next_state
    """
    next_state = np.zeros_like(state)

    for j in range(1, len(state) - 1):
        next_state[j] = solvers.timestep_roe(state, j, r, f, fprime)

    next_state[0] = next_state[-3]
    next_state[-1] = next_state[2]

    return next_state
Пример #5
0
def create_dataset(conditions,
                   base_path=base_path,
                   str_case=str_case,
                   overwrite=False):
    pathtocheckX = osp.join(base_path, str_case + "X.npy")
    pathtochecky = osp.join(base_path, str_case + "y.npy")

    dt = conditions['tf'] / conditions['Nt']
    dx = float(conditions['L']) / (conditions['Nx'] - 1)

    if osp.exists(pathtocheckX) and osp.exists(
            pathtochecky) and overwrite == False:
        print("%s and %s exist" % (pathtocheckX, pathtochecky))

        X = np.load(pathtocheckX)
        y = np.load(pathtochecky)

    else:
        if not osp.exists(base_path):
            os.mkdir(base_path)

        X, y = np.zeros((1, 4)), np.zeros((1))

        add_block = lambda u, j: [
            u[j - 1], u[j], u[j + 1], (u[j + 1] - u[j - 1]) / (2 * dx)
        ]
        #        plt.figure("Evolution")
        for n in range(n_cases):
            amp = np.random.choice(np.linspace(0.4, 0.55, 10))

            for a in range(n_phase):
                p = np.random.choice(np.linspace(-np.pi, np.pi, 200))
                u = amp * np.sin(2 * np.pi * (line_x) / (conditions['L']) + p)
                u_next = amp * np.sin(2 * np.pi * (line_x) /
                                      (conditions['L']) + p)

                #                plt.clf()

                for t in range(conditions['Nt']):
                    if t != 0:
                        u = u_next
                        u_next = np.zeros_like(u)
                    for j in range(1, len(line_x) - 1):
                        u_next[j] = solvers.timestep_roe(
                            u, j, dt / dx, conditions['f'],
                            conditions['fprime'])

                    u_next[0] = u_next[-2]
                    u_next[-1] = u_next[2]

                    #                    plt.plot(line_x[1:-1], u_next[1:-1])
                    #                    plt.pause(0.4)
                    #                    if t % 20 == 0 :
                    #                        plt.clf()

                    for j in range(1, len(line_x) - 1):
                        X = np.block([[X], add_block(u, j)])
                        y = np.block([[y], [u_next[j]]])

        X = np.delete(X, 0, axis=0)
        y = np.delete(y, 0, axis=0)

        x = []

        for j in range(len(X) // szline):
            x.append([X[j * szline:(j + 1) * szline]])

        x = np.array(x)

        X = x.reshape(-1, szline, X.shape[1])

        np.save(pathtocheckX, X)
        np.save(pathtochecky, y)

    return X, y