Пример #1
0
 def in_chebyshev_basis(self):
     res = poly.Polynomial({poly.ChebyshevVector({}): 1})
     for v, p in self:
         c = poly2cheb([0] * p + [1])
         basis = poly.ChebyshevVector.construct_basis([v], p)
         res *= poly.Polynomial(dict(zip(basis, c)))
     return res
Пример #2
0
 def in_monomial_basis(self):
     res = poly.Polynomial({poly.MonomialVector({}): 1})
     for v, p in self:
         c = cheb2poly([0] * p + [1])
         basis = poly.MonomialVector.construct_basis([v], p)
         res *= poly.Polynomial(dict(zip(basis, c)))
     return res
Пример #3
0
 def make_polynomial(cls, other):
     if isinstance(other, Number):
         return poly.Polynomial({cls({}): other})
     elif isinstance(other, poly.Variable):
         return poly.Polynomial({cls({other: 1}): 1})
     else:
         raise TypeError(
             f'cannot make a polynomial out of a {type(other).__name__}.')
Пример #4
0
 def __mul__(self, cheb):
     self._verify_multiplicand(cheb)
     variables = set(self.variables() + cheb.variables())
     prod_powers = ((self[v] + cheb[v], abs(self[v] - cheb[v]))
                    for v in variables)
     coef = .5**len(variables)
     multiplication = poly.Polynomial({})
     for powers in product(*prod_powers):
         cheb = ChebyshevVector(dict(zip(variables, powers)))
         multiplication += poly.Polynomial({cheb: coef})
     return multiplication
Пример #5
0
 def derivative(self, variable):
     power = self[variable]
     if power == 0:
         monomial = MonomialVector({})
     else:
         monomial = deepcopy(self)
         monomial[variable] -= 1
     return poly.Polynomial({monomial: power})
Пример #6
0
 def substitute(self, evaluation_dict):
     coefficient = prod([
         self._call_univariate(self[var], val)
         for var, val in evaluation_dict.items()
     ])
     vector = type(self)(
         {v: p
          for v, p in self if not v in evaluation_dict})
     return poly.Polynomial({vector: coefficient})
Пример #7
0
 def integral(self, variable):
     power = self[variable]
     integral = poly.Polynomial({})
     cheb = deepcopy(self)
     cheb[variable] = power + 1
     integral[cheb] = .5 / (1 + power)
     cheb = deepcopy(self)
     cheb[variable] = abs(power - 1)
     integral[cheb] += .25 if power == 1 else .5 / (1 - power)
     return integral
Пример #8
0
 def derivative(self, variable):
     '''
     Uses the formula for the derivative in terms of the polynomials of the
     second kind, then express the polynomial of the second kind as a sum of
     polynomials of the first.
     '''
     power = self[variable]
     derivative = poly.Polynomial({})
     for q in range(power):
         if power % 2 ^ q % 2:
             cheb = deepcopy(self)
             cheb[variable] = q
             derivative[cheb] = power if q == 0 else power * 2
     return derivative
Пример #9
0
 def integral(self, variable):
     monomial = deepcopy(self)
     monomial[variable] += 1
     return poly.Polynomial({monomial: 1 / (self[variable] + 1)})
Пример #10
0
 def __mul__(self, monomial):
     self._verify_multiplicand(monomial)
     variables = set(self.variables() + monomial.variables())
     monomial = MonomialVector({v: self[v] + monomial[v] for v in variables})
     return poly.Polynomial({monomial: 1})