def test_authors_in_cache(): create_cache(drop=True, file=test_cache) # Variables expected_auth = ["53164702100", "57197093438"] search_auth = ["55317901900"] # Test empty cache df1 = pd.DataFrame(expected_auth, columns=["auth_id"], dtype="int64") incache, tosearch = authors_in_cache(df1, file=test_cache) expected_cols = ['auth_id', 'eid', 'surname', 'initials', 'givenname', 'affiliation', 'documents', 'affiliation_id', 'city', 'country', 'areas'] expected_auth = [int(au) for au in expected_auth] assert_equal(tosearch, expected_auth) assert_equal(len(incache), 0) assert_equal(incache.columns.tolist(), expected_cols) # Test partial retrieval q = "AU-ID({})".format(') OR AU-ID('.join([str(a) for a in expected_auth])) res = pd.DataFrame(AuthorSearch(q).authors, dtype="int64") res["auth_id"] = res["eid"].str.split("-").str[-1] res = res[expected_cols] cache_insert(res, table="authors", file=test_cache) df2 = pd.DataFrame(expected_auth + search_auth, columns=["auth_id"], dtype="int64") incache, tosearch = authors_in_cache(df2, file=test_cache) assert_equal(tosearch, [55317901900]) assert_equal(len(incache), 2) # Test full retrieval incache, tosearch = authors_in_cache(df1, file=test_cache) assert_equal(tosearch, []) assert_equal(len(incache), 2)
def test_sources_afids_in_sources_cache(): create_cache(drop=True, file=test_cache) # Variables expected_sources = [22900] expected_years = [2010, 2005] df = pd.DataFrame(list(product(expected_sources, expected_years)), columns=["source_id", "year"], dtype="int64") # Populate cache res = query_year(expected_years[0], expected_sources, False, False, afid=True) cache_insert(res, table="sources", file=test_cache) # Retrieve from cache sources_ys_incache, sources_ys_search = sources_in_cache(df, file=test_cache) expected_sources = [int(s) for s in expected_sources] assert_equal(sources_ys_incache.source_id.tolist(), expected_sources) assert_equal(sources_ys_incache.year.tolist(), [expected_years[0]]) assert_equal(sources_ys_search.source_id.tolist(), expected_sources) assert_equal(sources_ys_search.year.tolist(), [expected_years[1]])
def test_sources_afids_in_cache_partial(): create_cache(drop=True, file=test_cache) # Variables expected_sources = [22900] expected_years = [2010, 2005] df = pd.DataFrame(list(product(expected_sources, expected_years)), columns=["source_id", "year"], dtype="int64") sa_incache, sa_search = sources_in_cache(df, file=test_cache, afid=True) # Populate cache res = query_year(expected_years[0], expected_sources, False, False, afid=True) cache_insert(res, table="sources_afids", file=test_cache) # Retrieve from cache sa_incache, sa_search = sources_in_cache(df, file=test_cache, afid=True) expected_sources = set([int(s) for s in expected_sources]) assert_equal(set(sa_incache.source_id.tolist()), set(expected_sources)) assert_equal(set(sa_incache.year.tolist()), set([expected_years[0]])) assert_equal(set(sa_search.source_id.tolist()), set(expected_sources)) assert_equal(set(sa_search.year.tolist()), set([expected_years[1]])) expected = range(182-5, 182+5) assert_true(len(sa_incache) in expected) assert_true(len(sa_incache.afid.drop_duplicates()) in expected)
def query_author_data(authors_list, refresh=False, verbose=False): """Wrapper function to search author data for a list of authors, searching first in cache and then via stacked search. Parameters ---------- authors_list : list List of Scopus Author IDs to search. refresh : bool (optional, default=False) Whether to refresh scopus cached files if they exist, or not. verbose : bool (optional) Whether to print information on the search progress. Returns ------- authors_data : DataFrame A dataframe with authors data from AuthorSearch for the list provided. """ authors = pd.DataFrame(authors_list, columns=["auth_id"], dtype="int64") # merge existing data in cache and separate missing records auth_done, auth_missing = authors_in_cache(authors) if auth_missing: params = { "group": auth_missing, "res": [], "refresh": refresh, "joiner": ") OR AU-ID(", "q_type": "author", "template": Template("AU-ID($fill)") } if verbose: print("Pre-filtering...") params.update({"total": len(auth_missing)}) res, _ = stacked_query(**params) res = pd.DataFrame(res) cache_insert(res, table="authors") auth_done, _ = authors_in_cache(authors) return auth_done
def test_author_year_in_cache(): create_cache(drop=True, file=test_cache) # Variables expected_auth = ["53164702100", "57197093438"] search_auth = ["55317901900"] year = 2016 # Test empty cache df1 = pd.DataFrame(expected_auth, columns=["auth_id"], dtype="int64") df1["year"] = year auth_y_incache, auth_y_search = author_year_in_cache(df1, file=test_cache) assert_frame_equal(auth_y_search, df1) assert_equal(len(auth_y_incache), 0) # Test partial retrieval fill = ') OR AU-ID('.join([str(a) for a in expected_auth]) q = "(AU-ID({})) AND PUBYEAR BEF {}".format(fill, year+1) res = build_dict(ScopusSearch(q).results, expected_auth) res = pd.DataFrame.from_dict(res, orient="index", dtype="int64") res["year"] = year cols = ["year", "first_year", "n_pubs", "n_coauth"] res = res[cols].reset_index().rename(columns={"index": "auth_id"}) cache_insert(res, table="author_year", file=test_cache) df2 = pd.DataFrame(expected_auth + search_auth, columns=["auth_id"], dtype="int64") df2["year"] = year auth_y_incache, auth_y_search = author_year_in_cache(df2, file=test_cache) expected_auth = [int(au) for au in expected_auth] search_auth = [int(au) for au in search_auth] assert_equal(sorted(auth_y_incache.auth_id.tolist()), expected_auth) assert_equal(auth_y_incache.year.tolist(), [year, year]) assert_equal(auth_y_search.auth_id.tolist(), search_auth) assert_equal(auth_y_search.year.tolist(), [year]) # Test full retrieval auth_year_incache, auth_year_search = author_year_in_cache(df1, file=test_cache) assert_equal(sorted(auth_year_incache.auth_id.tolist()), expected_auth) assert_equal(auth_year_incache.year.tolist(), [year, year]) assert_true(auth_year_search.empty)
def test_author_size_in_cache(): create_cache(drop=True, file=test_cache) # Variables expected_auth = 53164702100 expected_years = [2010, 2017] pubs1 = 0 pubs2 = 6 cols = ["auth_id", "year"] df = pd.DataFrame(list(product([expected_auth], expected_years)), columns=cols, dtype="int64") # Test empty cache size = author_size_in_cache(df, file=test_cache) assert_equal(len(size), 0) assert_true(isinstance(size, pd.DataFrame)) # Test adding to and retrieving from cache tp1 = (expected_auth, expected_years[0], pubs1) cache_insert(tp1, table="author_size", file=test_cache) tp2 = (expected_auth, expected_years[1], pubs2) cache_insert(tp2, table="author_size", file=test_cache) size = author_size_in_cache(df, file=test_cache) assert_equal(len(size), 2) assert_frame_equal(size[cols], df) assert_equal(size[size.year == expected_years[0]]["n_pubs"][0], pubs1) assert_equal(size[size.year == expected_years[1]]["n_pubs"][1], pubs2)
def search_group_from_sources(self, stacked, verbose, refresh=False): """Define groups of authors based on publications from a set of sources. Parameters ---------- self : sosia.Original The object of the Scientist to search information for. verbose : bool (optional, default=False) Whether to report on the progress of the process. refresh : bool (optional, default=False) Whether to refresh cached search files. Returns ------- today, then, negative : set Set of authors publishing in three periods: During the year of treatment, during years to match on, and during years before the first publication. """ # Filtering variables min_year = self.first_year - self.year_margin max_year = self.first_year + self.year_margin if self.period: _margin_setter = self.publications_period else: _margin_setter = self.publications max_pubs = max(margin_range(len(_margin_setter), self.pub_margin)) years = list(range(min_year, max_year + 1)) search_years = [min_year - 1] if not self._ignore_first_id: search_years.extend(range(min_year, max_year + 1)) search_sources, _ = zip(*self.search_sources) # Verbose variables n = len(search_sources) text = "Searching authors for search_group in {} sources...".format(n) custom_print(text, verbose) today = set() then = set() negative = set() if stacked: # Make use of SQL cache # Year provided (select also based on location) # Get already cached sources from cache sources_ay = DataFrame(list(product(search_sources, [self.active_year])), columns=["source_id", "year"]) _, _search = sources_in_cache(sources_ay, refresh=refresh, afid=True) res = query_year(self.active_year, _search.source_id.tolist(), refresh, verbose, afid=True) cache_insert(res, table="sources_afids") sources_ay, _ = sources_in_cache(sources_ay, refresh=refresh, afid=True) # Authors publishing in provided year and locations mask = None if self.search_affiliations: mask = sources_ay.afid.isin(self.search_affiliations) today = flat_set_from_df(sources_ay, "auids", mask) # Years before active year # Get already cached sources from cache sources_ys = DataFrame(list(product(search_sources, search_years)), columns=["source_id", "year"]) _, sources_ys_search = sources_in_cache(sources_ys, refresh=refresh) missing_years = set(sources_ys_search.year.tolist()) # Eventually add information for missing years to cache for y in missing_years: mask = sources_ys_search.year == y _sources_search = sources_ys_search[mask].source_id.tolist() res = query_year(y, _sources_search, refresh, verbose) cache_insert(res, table="sources") # Get full cache sources_ys, _ = sources_in_cache(sources_ys, refresh=False) # Authors publishing in year(s) of first publication if not self._ignore_first_id: mask = sources_ys.year.between(min_year, max_year, inclusive=True) then = flat_set_from_df(sources_ys, "auids", mask) # Authors with publications before mask = sources_ys.year < min_year negative = flat_set_from_df(sources_ys, "auids", mask) else: auth_count = [] print_progress(0, n, verbose) for i, source_id in enumerate(search_sources): info = query_journal(source_id, [self.active_year] + years, refresh) today.update(info[str(self.active_year)]) if not self._ignore_first_id: for y in years: then.update(info[str(y)]) for y in range(int(min(info.keys())), min_year): negative.update(info[str(y)]) for y in info: if int(y) <= self.active_year: auth_count.extend(info[str(y)]) print_progress(i + 1, n, verbose) c = Counter(auth_count) negative.update({a for a, npub in c.items() if npub > max_pubs}) return today, then, negative
def filter_pub_counts(group, ybefore, yupto, npapers, yfrom=None, verbose=False): """Filter authors based on restrictions in the number of publications in different periods, searched by query_size. Parameters ---------- group : list of str Scopus IDs of authors to be filtered. ybefore : int Year to be used as first year. Publications on this year and before need to be 0. yupto : int Year up to which to count publications. npapers : list List of count of publications, minimum and maximum. yfrom : int (optional, default=None) If provided, publications are counted only after this year. Publications are still set to 0 before ybefore. Returns ------- group : list of str Scopus IDs filtered. pubs_counts : list of int List of count of publications within the period provided for authors in group. older_authors : list of str Scopus IDs filtered out because have publications before ybefore. Notes ----- It uses cached values first, and searches for more data if needed. """ group = [int(x) for x in group] years_check = [ybefore, yupto] if yfrom: years_check.extend([yfrom - 1]) authors = DataFrame(list(product(group, years_check)), columns=["auth_id", "year"], dtype="int64") authors_size = author_size_in_cache(authors) au_skip = [] group_tocheck = [x for x in group] older_authors = [] pubs_counts = [] # use information in cache if not authors_size.empty: # authors that can be already removed because older mask = ((authors_size.year <= ybefore) & (authors_size.n_pubs > 0)) remove = (authors_size[mask]["auth_id"].drop_duplicates().tolist()) older_authors.extend(remove) au_remove = [x for x in remove] # remove if number of pubs in year is in any case too small mask = ((authors_size.year >= yupto) & (authors_size.n_pubs < min(npapers))) remove = (authors_size[mask]["auth_id"].drop_duplicates().tolist()) au_remove.extend(remove) # authors with no pubs before min year mask = (((authors_size.year == ybefore) & (authors_size.n_pubs == 0))) au_ok_miny = (authors_size[mask]["auth_id"].drop_duplicates().tolist()) # check publications in range if yfrom: # adjust count by substracting the count before period; keep # only authors for which it is possible mask = (authors_size.year == yfrom - 1) authors_size_bef = authors_size[mask] authors_size_bef["year"] = yupto authors_size_bef.columns = ["auth_id", "year", "n_pubs_bef"] bef_auth = set(authors_size_bef["auth_id"]) mask = ((authors_size["auth_id"].isin(bef_auth)) & (authors_size["year"] == yupto)) authors_size = authors_size[mask] authors_size = authors_size.merge(authors_size_bef, "left", on=["auth_id", "year"]) authors_size = authors_size.fillna(0) authors_size["n_pubs"] -= authors_size["n_pubs_bef"] # authors that can be already removed because of pubs count mask = (((authors_size.year >= yupto) & (authors_size.n_pubs < min(npapers))) | ((authors_size.year <= yupto) & (authors_size.n_pubs > max(npapers)))) remove = (authors_size[mask]["auth_id"].drop_duplicates().tolist()) au_remove.extend(remove) # authors with pubs count within the range before the given year mask = (((authors_size.year == yupto) & (authors_size.n_pubs >= min(npapers))) & (authors_size.n_pubs <= max(npapers))) au_ok_year = authors_size[mask][["auth_id", "n_pubs"]].drop_duplicates() # authors ok (match both conditions) au_ok = list(set(au_ok_miny).intersection(set(au_ok_year["auth_id"]))) mask = au_ok_year["auth_id"].isin(au_ok) pubs_counts = au_ok_year[mask]["n_pubs"].tolist() # authors that match only the first condition, but the second is # not known, can skip the first cindition check. au_skip = [x for x in au_ok_miny if x not in au_remove + au_ok] group = [x for x in group if x not in au_remove] group_tocheck = [x for x in group if x not in au_skip + au_ok] text = "Left with {} authors based on size information already in "\ "cache.\n{} to check\n".format(len(group), len(group_tocheck)) custom_print(text, verbose) # Verify that publications before minimum year are 0 if group_tocheck: text = "Searching through characteristics of {:,} authors...".format( len(group_tocheck)) custom_print(text, verbose) print_progress(0, len(group_tocheck), verbose) to_loop = [x for x in group_tocheck] # Temporary copy for i, au in enumerate(to_loop): q = "AU-ID({}) AND PUBYEAR BEF {}".format(au, ybefore + 1) size = base_query("docs", q, size_only=True) tp = (au, ybefore, size) cache_insert(tp, table="author_size") print_progress(i + 1, len(to_loop), verbose) if not size == 0: group.remove(au) group_tocheck.remove(au) older_authors.append(au) text = "Left with {} authors based on size information before "\ "minium year\n Filtering based on size query before "\ "provided year\n".format(len(group)) custom_print(text, verbose) # Verify that publications before the given year falle in range group_tocheck.extend(au_skip) n = len(group_tocheck) if group_tocheck: text = "Searching through characteristics of {:,} authors".format(n) custom_print(text, verbose) print_progress(0, n, verbose) for i, au in enumerate(group_tocheck): q = "AU-ID({}) AND PUBYEAR BEF {}".format(au, yupto + 1) n_pubs_yupto = base_query("docs", q, size_only=True) tp = (au, yupto, n_pubs_yupto) cache_insert(tp, table="author_size") # Eventually decrease publication count if yfrom and n_pubs_yupto >= min(npapers): q = "AU-ID({}) AND PUBYEAR BEF {}".format(au, yfrom) n_pubs_yfrom = base_query("docs", q, size_only=True) tp = (au, yfrom - 1, n_pubs_yfrom) cache_insert(tp, table="author_size") n_pubs_yupto -= n_pubs_yfrom if n_pubs_yupto < min(npapers) or n_pubs_yupto > max(npapers): group.remove(au) else: pubs_counts.append(n_pubs_yupto) print_progress(i + 1, n, verbose) return group, pubs_counts, older_authors
def find_matches(self, stacked=False, verbose=False, stop_words=STOPWORDS, information=True, refresh=False, **tfidf_kwds): """Find matches within search_group based on four criteria: 1. Started publishing in about the same year 2. Has about the same number of publications in the year of treatment 3. Has about the same number of coauthors in the year of treatment 4. Has about the same number of citations in the year of treatment 5. Works in the same field as the scientist's main field Parameters ---------- stacked : bool (optional, default=False) Whether to combine searches in few queries or not. Cached files will most likely not be resuable. Set to True if you query in distinct fields or you want to minimize API key usage. verbose : bool (optional, default=False) Whether to report on the progress of the process. stop_words : list (optional, default=STOPWORDS) A list of words that should be filtered in the analysis of abstracts. Default list is the list of english stopwords by nltk, augmented with numbers and interpunctuation. information : bool or iterable (optional, default=True) Whether to return additional information on the matches that may help in the selection process. If an iterable of keywords is provied, only return information for these keywords. Allowed values are "first_year", "num_coauthors", "num_publications", "num_citations", "country", "language", "reference_sim", "abstract_sim". refresh : bool (optional, default=False) Whether to refresh cached search files. tfidf_kwds : keywords Parameters to pass to TfidfVectorizer from the sklearn package for abstract vectorization. Not used when `information=False` or or when "abstract_sim" is not in `information`. See https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html for possible values. Returns ------- matches : list A list of Scopus IDs of scientists matching all the criteria (if information is False) or a list of namedtuples with the Scopus ID and additional information (if information is True). Raises ------ ValueError If information is not bool and contains invalid keywords. """ # Checks info_keys = [ "first_name", "surname", "first_year", "num_coauthors", "num_publications", "num_citations", "num_coauthors_period", "num_publications_period", "num_citations_period", "subjects", "country", "affiliation_id", "affiliation", "language", "reference_sim", "abstract_sim" ] if isinstance(information, bool): if information: keywords = info_keys elif self.search_affiliations: information = True keywords = ["affiliation_id"] else: keywords = None else: keywords = information invalid = [x for x in keywords if x not in info_keys] if invalid: text = ("Parameter information contains invalid keywords: ", ", ".join(invalid)) raise ValueError(text) if self.search_affiliations and "affiliation_id" not in keywords: keywords.append("affiliation_id") # Variables _years = range(self.first_year - self.year_margin, self.first_year + self.year_margin + 1) if self.period: _npapers = margin_range(len(self.publications_period), self.pub_margin) _ncits = margin_range(self.citations_period, self.cits_margin) _ncoauth = margin_range(len(self.coauthors_period), self.coauth_margin) _npapers_full = margin_range(len(self.publications), self.pub_margin) _ncits_full = margin_range(self.citations, self.cits_margin) _ncoauth_full = margin_range(len(self.coauthors), self.coauth_margin) else: _npapers = margin_range(len(self.publications), self.pub_margin) _ncits = margin_range(self.citations, self.cits_margin) _ncoauth = margin_range(len(self.coauthors), self.coauth_margin) n = len(self.search_group) text = "Searching through characteristics of {:,} authors".format(n) custom_print(text, verbose) # First round of filtering: minimum publications and main field # create df of authors authors = query_author_data(self.search_group, verbose=verbose) same_field = (authors.areas.str.startswith(self.main_field[1])) enough_pubs = (authors.documents.astype(int) >= int(min(_npapers))) group = authors[same_field & enough_pubs]["auth_id"].tolist() group.sort() n = len(group) text = "Left with {} authors\nFiltering based on provided "\ "conditions...".format(n) custom_print(text, verbose) # Second round of filtering: # Check having no publications before minimum year, and if 0, the # number of publications in the relevant period. params = { "group": group, "ybefore": min(_years) - 1, "yupto": self.year, "npapers": _npapers, "yfrom": self.year_period, "verbose": verbose } group, _, _ = filter_pub_counts(**params) # Also screen out ids with too many publications over the full period if self.period: params.update({ "npapers": [1, max(_npapers_full)], "yfrom": None, "group": group }) group, _, _ = filter_pub_counts(**params) # Third round of filtering: citations (in the FULL period). authors = pd.DataFrame({"auth_id": group, "year": self.year}) _, authors_cits_search = author_cits_in_cache(authors) text = "Search and filter based on count of citations\n{} to search "\ "out of {}\n".format(len(authors_cits_search), len(group)) custom_print(text, verbose) if not authors_cits_search.empty: authors_cits_search['n_cits'] = 0 print_progress(0, len(authors_cits_search), verbose) for i, au in authors_cits_search.iterrows(): q = "REF({}) AND PUBYEAR BEF {} AND NOT AU-ID({})".format( au['auth_id'], self.year + 1, au['auth_id']) n = base_query("docs", q, size_only=True) authors_cits_search.at[i, 'n_cits'] = n print_progress(i + 1, len(authors_cits_search), verbose) cache_insert(authors_cits_search, table="author_cits_size") auth_cits_incache, _ = author_cits_in_cache( authors[["auth_id", "year"]]) # keep if citations are in range mask = ((auth_cits_incache.n_cits <= max(_ncits)) & (auth_cits_incache.n_cits >= min(_ncits))) if self.period: mask = ((auth_cits_incache.n_cits >= min(_ncits)) & (auth_cits_incache.n_cits <= max(_ncits_full))) group = (auth_cits_incache[mask]['auth_id'].tolist()) # Fourth round of filtering: Download publications, verify coauthors # (in the FULL period) and first year. n = len(group) text = "Left with {} authors\nFiltering based on coauthors "\ "number...".format(n) custom_print(text, verbose) authors = pd.DataFrame({ "auth_id": group, "year": self.year }, dtype="uint64") _, author_year_search = author_year_in_cache(authors) matches = [] if stacked: # Combine searches if not author_year_search.empty: q = Template( "AU-ID($fill) AND PUBYEAR BEF {}".format(self.year + 1)) auth_year_group = author_year_search.auth_id.tolist() params = { "group": auth_year_group, "res": [], "template": q, "refresh": refresh, "joiner": ") OR AU-ID(", "q_type": "docs" } if verbose: params.update({"total": len(auth_year_group)}) res, _ = stacked_query(**params) res = build_dict(res, auth_year_group) if res: # res can become empty after build_dict if a au_id is old res = pd.DataFrame.from_dict(res, orient="index") res["year"] = self.year res = res[["year", "first_year", "n_pubs", "n_coauth"]] res.index.name = "auth_id" res = res.reset_index() cache_insert(res, table="author_year") author_year_cache, _ = author_year_in_cache(authors) if self._ignore_first_id: # only number of coauthors should be big enough enough = (author_year_cache.n_coauth >= min(_ncoauth)) notoomany = (author_year_cache.n_coauth <= max(_ncoauth_full)) mask = enough & notoomany elif self.period: # number of coauthors should be "big enough" and first year in # window same_start = (author_year_cache.first_year.between( min(_years), max(_years))) enough = (author_year_cache.n_coauth >= min(_ncoauth)) notoomany = (author_year_cache.n_coauth <= max(_ncoauth_full)) mask = same_start & enough & notoomany else: # all restrictions apply same_start = (author_year_cache.first_year.between( min(_years), max(_years))) same_coauths = (author_year_cache.n_coauth.between( min(_ncoauth), max(_ncoauth))) mask = same_start & same_coauths matches = author_year_cache[mask]["auth_id"].tolist() else: # Query each author individually for i, au in enumerate(group): print_progress(i + 1, len(group), verbose) res = base_query("docs", "AU-ID({})".format(au), refresh=refresh) res = [ p for p in res if p.coverDate and int(p.coverDate[:4]) <= self.year ] # Filter min_year = int(min([p.coverDate[:4] for p in res])) authids = [p.author_ids for p in res if p.author_ids] authors = set([a for p in authids for a in p.split(";")]) n_coauth = len(authors) - 1 # Subtract 1 for focal author if self._ignore_first_id and (n_coauth < max(_ncoauth)): # only number of coauthors should be big enough continue elif (self.period and ((n_coauth < max(_ncoauth)) or (min_year not in _years))): # number of coauthors should be "big enough" and first year # in window continue elif ((len(res) not in _npapers) or (min_year not in _years) or (n_coauth not in _ncoauth)): continue matches.append(au) if self.period: text = "Left with {} authors\nFiltering based on exact period "\ "citations and coauthors...".format(len(matches)) custom_print(text, verbose) # Further screen matches based on period cits and coauths to_loop = [m for m in matches] # temporary copy for m in to_loop: q = "AU-ID({})".format(m) res = base_query("docs", "AU-ID({})".format(m), refresh=refresh, fields=["eid", "author_ids", "coverDate"]) pubs = [ p for p in res if int(p.coverDate[:4]) <= self.year and int(p.coverDate[:4]) >= self.year_period ] coauths = set(get_authors(pubs)) - {str(m)} if not (min(_ncoauth) <= len(coauths) <= max(_ncoauth)): matches.remove(m) continue eids_period = [p.eid for p in pubs] cits = count_citations(search_ids=eids_period, pubyear=self.year + 1, exclusion_key="AU-ID", exclusion_ids=[str(m)]) if not (min(_ncits) <= cits <= max(_ncits)): matches.remove(m) text = "Found {:,} author(s) matching all criteria".format( len(matches)) custom_print(text, verbose) # Possibly add information to matches if keywords and len(matches) > 0: custom_print("Providing additional information...", verbose) profiles = [ Scientist([str(a)], self.year, period=self.period, refresh=refresh) for a in matches ] matches = inform_matches(profiles, self, keywords, stop_words, verbose, refresh, **tfidf_kwds) if self.search_affiliations: matches = [ m for m in matches if len( set(m.affiliation_id.replace(" ", "").split(";")). intersection([str(a) for a in self.search_affiliations])) ] return matches