Пример #1
0
    def test_500_io(self):
        # Test save/load HDF5
        dets = ['det0', 'det1', 'det2']
        n, ofs = 1000, 0
        aman = core.AxisManager(core.LabelAxis('dets', dets),
                                core.OffsetAxis('samps', n, ofs),
                                core.IndexAxis('indexaxis', 12))
        # Make sure this has axes, scalars, a string array ...
        aman.wrap_new('test1', ('dets', 'samps'), dtype='float32')
        aman.wrap_new('flag1',
                      shape=('dets', 'samps'),
                      cls=so3g.proj.RangesMatrix.zeros)
        aman.wrap('scalar', 8)
        aman.wrap('test_str', np.array(['a', 'b', 'cd']))
        aman.wrap('flags', core.FlagManager.for_tod(aman, 'dets', 'samps'))

        aman.wrap('a', np.int32(12))
        aman.wrap('b', np.float32(12.))
        aman.wrap('c', np.str_('twelve'))
        aman.wrap('d', np.bool_(False))

        with tempfile.TemporaryDirectory() as tempdir:
            filename = os.path.join(tempdir, 'test.h5')
            aman.save(filename, 'my_axisman')
            aman2 = aman.load(filename, 'my_axisman')
            shutil.copy(filename, 'debug.h5')
        # This is not a very satisfying comparison ... support for ==
        # should be required for all AxisManager members!
        for k in aman._fields.keys():
            self.assertEqual(aman[k].__class__, aman2[k].__class__)
            if hasattr(aman[k], 'shape'):
                self.assertEqual(aman[k].shape, aman2[k].shape)
            else:
                self.assertEqual(aman[k], aman2[k])  # scalar
Пример #2
0
def get_pca_model(tod=None, pca=None, n_modes=None, signal=None,
                  wrap=None, wrap_pca=None):
    """Convert a PCA decomposition into the signal basis, i.e. into
    time-dependent modes that one might use for cleaning or
    calibrating.

    The generalization of "common mode" computation is to convert the
    eigen-decomposition of the covariance matrix into a limited set of
    modes that explain a high fraction of the power in the input
    signals.

    Here we select the strongest eigenmodes from the PCA and compute
    the time-dependent modes and the projection of each detector
    signal onto each mode.  An approximation for the input signal may
    then be computed as

       signal_model = weights . modes

    where weights has shape (dets, eigen), modes has shape (eigen,
    samps), and . indicates matrix multipliaction.  The size of the
    eigen axis can be as large as the number of dets, but is typically
    smaller and in this routine is set by n_modes.

    Arguments:
        tod: AxisManager with dets and samps axes.
        pca: AxisManager holding a PCA decomposition, as returned by
            get_pca.  If not specified, it will be computed from the
            data.
        n_modes: integer specifying the number of modes to compute;
            the strongest modes are taken and this sets the size of
            the "eigen" axis in the output.  Defaults to len(dets),
            but beware that the resulting data object will be the same
            size as the input signal.
        signal: array of shape (dets, samps) that is used to construct
            the requested eigen modes.  If pca is not passed in, this
            signal is also used to compute the covariance for PCA.
        wrap: string; if specified then the returned result is also
            stored in tod under that name.

    Returns:
        An AxisManager with (dets, eigen, samps) axes.  The field
        'weights' has shape (dets, eigen) and the field 'modes' has
        shape (eigen, samps).

    """
    if pca is None:
        pca = get_pca(tod=tod, signal=signal)
    if n_modes is None:
        n_modes = pca.eigen.count

    mode_axis = core.IndexAxis('eigen', n_modes)
    output = core.AxisManager(tod.dets, mode_axis, tod.samps)
    if signal is None:
        signal = tod.signal

    R = pca.R[:, :n_modes]
    output.wrap('weights', R, [(0, 'dets'), (1, 'eigen')])
    output.wrap('modes', np.dot(R.transpose(), signal),
                [(0, 'eigen'), (1, 'samps')])
    return output
Пример #3
0
 def test_100_index(self):
     a1 = np.zeros(100)
     a1[10] = 1.
     aman = core.AxisManager(core.IndexAxis('samps', len(a1)))
     aman.wrap('a1', a1, [(0, 'samps')])
     aman.restrict('samps', (10, 30))
     self.assertNotEqual(aman.a1[0], 0.)
     self.assertEqual(len(aman.a1), 20)
Пример #4
0
 def test_100_index(self):
     a1 = np.zeros(100)
     a1[10] = 1.
     aman = core.AxisManager(core.IndexAxis('samps', len(a1)))
     aman.wrap('a1', a1, [(0, 'samps')])
     # Don't let people wrap the same field twice
     with self.assertRaises(ValueError):
         aman.wrap('a1', 2 * a1, [(0, 'samps')])
     aman.restrict('samps', (10, 30))
     self.assertNotEqual(aman.a1[0], 0.)
     self.assertEqual(len(aman.a1), 20)
Пример #5
0
 def test_130_not_inplace(self):
     a1 = np.zeros(100)
     a1[10] = 1.
     aman = core.AxisManager(core.IndexAxis('samps', len(a1)))
     aman.wrap('a1', a1, [(0, 'samps')])
     # This should return a separate thing.
     rman = aman.restrict('samps', (10, 30), in_place=False)
     #self.assertNotEqual(aman.a1[0], 0.)
     self.assertEqual(len(aman.a1), 100)
     self.assertEqual(len(rman.a1), 20)
     self.assertNotEqual(aman.a1[10], 0.)
     self.assertNotEqual(rman.a1[0], 0.)
Пример #6
0
def get_pca(tod=None, cov=None, signal=None, wrap=None):
    """Compute a PCA decomposition of the kind useful for signal analysis.
    A symmetric non-negative matrix cov of shape(n_dets, n_dets) can
    be decomposed into matrix R (same shape) and vector E (length
    n_dets) such that

        cov = R . diag(E) . R^T

    with . denoting matrix multiplication and T denoting matrix
    transposition.

    Arguments:
        tod: AxisManager with dets and samps axes.
        cov: covariance matrix to decompose; if None then cov is
            computed from tod.signal (or signal).
        signal: array of shape (dets, samps).  If cov is not provided,
            it will be computed from this matrix.  Defaults to
            tod.signal.
        wrap: string; if set then the returned result is also stored
            in tod under this name.

    Returns:
        AxisManager with axes 'dets' and 'eigen' (of the same length),
        containing fields 'R' of shape (dets, eigen) and 'E' of shape
        (eigen).  The eigenmodes are sorted from strongest to weakest.

    """
    if cov is None:
        # Compute it from signal
        if signal is None:
            signal = tod.signal
        cov = np.cov(signal)
    dets = tod.dets

    mode_axis = core.IndexAxis('eigen', dets.count)
    output = core.AxisManager(dets, mode_axis)
    output.wrap('cov', cov, [(0, dets.name), (1, dets.name)])

    E, R = np.linalg.eig(cov)  # eigh nans sometimes...
    E[np.isnan(E)] = 0.
    idx = np.argsort(-E)
    output.wrap('E', E[idx], [(0, mode_axis.name)])
    output.wrap('R', R[:, idx], [(0, dets.name), (1, mode_axis.name)])
    return output
Пример #7
0
def get_tod(sig_type='trendy'):
    tod = core.AxisManager(core.LabelAxis('dets', ['a', 'b', 'c']),
                           core.IndexAxis('samps', 1000))
    tod.wrap_new('signal', ('dets', 'samps'), dtype='float32')
    tod.wrap_new('timestamps', ('samps', ))[:] = (np.arange(tod.samps.count) /
                                                  SAMPLE_FREQ_HZ)
    if sig_type == 'zero':
        pass
    elif sig_type == 'trendy':
        x = np.linspace(0, 1., tod.samps.count)
        tod.signal[:] = [(i + 1) + (i + 1)**2 * x
                         for i in range(tod.dets.count)]
    elif sig_type == 'white':
        tod.signal = np.random.normal(size=tod.shape)
    elif sig_type == 'red':
        tod.signal = np.random.normal(size=tod.shape)
        tod.signal[:] = np.cumsum(tod.signal, axis=1)
    else:
        raise RuntimeError(f'sig_type={sig_type}?')
    return tod
Пример #8
0
def get_trends(tod, remove=False, size=1, signal=None):
    """Computes trends for each detector signal that remove the slope
    connecting first and last points, as well as the mean of the
    signal.  The returned object can be treated like PCA model (e.g.,
    it can be passed as the model input to add_model).

    Arguments:
        tod: AxisManager with dets and samps axes.
        remove: boolean, if True then the computed trends (and means)
            are removed from the signal.
        size: the number of samples on each end of the signal to use
            for trend level computation.  Defaults to 1.
        signal: array of shape (dets, samps) to compute trends on.
            Defaults to tod.signal.

    Returns:
        An AxisManager with (dets, eigen, samps) axes.  The field
        'weights' has shape (dets, eigen) and the field 'modes' has
        shape (eigen, samps).  There are two modes, which always have
        the same form: index 0 is all ones, and index1 is a smooth
        line from -0.5 to +0.5.

    """
    if signal is None:
        signal = tod.signal
    trends = core.AxisManager(tod.dets, core.IndexAxis('eigen', 2), tod.samps)
    modes = np.ones((trends.eigen.count, trends.samps.count))
    modes[1] = np.linspace(-0.5, 0.5, modes.shape[1])
    weights = np.empty((trends.dets.count, trends.eigen.count))
    weights[:, 0] = signal.mean(axis=1)
    size = max(1, min(size, signal.shape[1] // 2))
    weights[:, 1] = (signal[:, -size:].mean(axis=1) -
                     signal[:, :size].mean(axis=1))
    trends.wrap('modes', modes)
    trends.wrap('weights', weights)
    if remove:
        add_model(tod, trends, scale=-1, signal=signal)
    return trends