def FetchAlertsData(args): api = dashboard_api.PerfDashboardCommunicator(args) with tables.DbSession(args.database_file) as con: # Get alerts. num_alerts = 0 bug_ids = set() # TODO: This loop may be slow when fetching thousands of alerts, needs a # better progress indicator. for data in api.IterAlertData(args.benchmark, args.sheriff, args.days): alerts = tables.alerts.DataFrameFromJson(data) pandas_sqlite.InsertOrReplaceRecords(con, 'alerts', alerts) num_alerts += len(alerts) bug_ids.update(alerts['bug_id'].unique()) print '%d alerts found!' % num_alerts # Get set of bugs associated with those alerts. bug_ids.discard(0) # A bug_id of 0 means untriaged. print '%d bugs found!' % len(bug_ids) # Filter out bugs already in cache. if args.use_cache: known_bugs = set(b for b in bug_ids if tables.bugs.Get(con, b) is not None) if known_bugs: print '(skipping %d bugs already in the database)' % len( known_bugs) bug_ids.difference_update(known_bugs) # Use worker pool to fetch bug data. total_seconds = worker_pool.Run( 'Fetching data of %d bugs: ' % len(bug_ids), _FetchBugsWorker, args, bug_ids) print '[%.1f bugs per second]' % (len(bug_ids) / total_seconds)
def FetchTimeseriesData(args): def _MatchesAllFilters(test_path): return all(f in test_path for f in args.filters) if args.benchmark is not None: api = dashboard_api.PerfDashboardCommunicator(args) test_paths = api.ListTestPaths(args.benchmark, sheriff=args.sheriff) elif args.input_file is not None: test_paths = list(_ReadTestPathsFromFile(args.input_file)) else: raise NotImplementedError('Expected --benchmark or --input-file') if args.filters: test_paths = filter(_MatchesAllFilters, test_paths) num_found = len(test_paths) print '%d test paths found!' % num_found con = sqlite3.connect(args.database_file) try: tables.CreateIfNeeded(con) if args.use_cache: test_paths = list(_IterStaleTestPaths(con, test_paths)) num_skipped = num_found - len(test_paths) if num_skipped: print '(skipping %d test paths already in the database)' % num_skipped finally: con.close() total_seconds = worker_pool.Run( 'Fetching data of %d timeseries: ' % len(test_paths), _FetchTimeseriesWorker, args, test_paths) print '[%.1f test paths per second]' % (len(test_paths) / total_seconds)
def FetchAlertsData(args): api = dashboard_api.PerfDashboardCommunicator(args) con = sqlite3.connect(args.database_file) try: tables.CreateIfNeeded(con) alerts = tables.alerts.DataFrameFromJson( api.GetAlertData(args.benchmark, args.sheriff, args.days)) print '%d alerts found!' % len(alerts) pandas_sqlite.InsertOrReplaceRecords(con, 'alerts', alerts) bug_ids = set(alerts['bug_id'].unique()) bug_ids.discard(0) # A bug_id of 0 means untriaged. print '%d bugs found!' % len(bug_ids) if args.use_cache: known_bugs = set(b for b in bug_ids if tables.bugs.Get(con, b) is not None) if known_bugs: print '(skipping %d bugs already in the database)' % len( known_bugs) bug_ids.difference_update(known_bugs) finally: con.close() total_seconds = worker_pool.Run( 'Fetching data of %d bugs: ' % len(bug_ids), _FetchBugsWorker, args, bug_ids) print '[%.1f bugs per second]' % (len(bug_ids) / total_seconds)
def FetchTimeseriesData(args): def _MatchesAllFilters(test_path): return all(f in test_path for f in args.filters) with _ApiAndDbSession(args) as (api, con): # Get test_paths. if args.benchmark is not None: api = dashboard_api.PerfDashboardCommunicator(args) test_paths = api.ListTestPaths(args.benchmark, sheriff=args.sheriff) elif args.input_file is not None: test_paths = list(_ReadTestPathsFromFile(args.input_file)) else: raise NotImplementedError('Expected --benchmark or --input-file') # Apply --filter's to test_paths. if args.filters: test_paths = filter(_MatchesAllFilters, test_paths) num_found = len(test_paths) print '%d test paths found!' % num_found # Filter out test_paths already in cache. if args.use_cache: test_paths = list(_IterStaleTestPaths(con, test_paths)) num_skipped = num_found - len(test_paths) if num_skipped: print '(skipping %d test paths already in the database)' % num_skipped # Use worker pool to fetch test path data. total_seconds = worker_pool.Run( 'Fetching data of %d timeseries: ' % len(test_paths), _FetchTimeseriesWorker, args, test_paths) print '[%.1f test paths per second]' % (len(test_paths) / total_seconds)
def FetchTimeseriesData(args): def _MatchesAllFilters(test_path): return all(f in test_path for f in args.filters) api = dashboard_api.PerfDashboardCommunicator(args) with tables.DbSession(args.database_file) as con: # Get test_paths. if args.benchmark is not None: api = dashboard_api.PerfDashboardCommunicator(args) test_paths = api.dashboard.ListTestPaths(args.benchmark, sheriff=args.sheriff) elif args.input_file is not None: test_paths = list(_ReadTestPathsFromFile(args.input_file)) elif args.study is not None: test_paths = list(args.study.IterTestPaths(api)) else: raise ValueError('No source for test paths specified') # Apply --filter's to test_paths. if args.filters: test_paths = filter(_MatchesAllFilters, test_paths) num_found = len(test_paths) print '%d test paths found!' % num_found # Filter out test_paths already in cache. if args.use_cache: test_paths = list(_IterStaleTestPaths(con, test_paths)) num_skipped = num_found - len(test_paths) if num_skipped: print '(skipping %d test paths already in the database)' % num_skipped # Use worker pool to fetch test path data. total_seconds = worker_pool.Run( 'Fetching data of %d timeseries: ' % len(test_paths), _FetchTimeseriesWorker, args, test_paths) print '[%.1f test paths per second]' % (len(test_paths) / total_seconds) if args.output_csv is not None: print print 'Post-processing data for study ...' dfs = [] with tables.DbSession(args.database_file) as con: for test_path in test_paths: df = tables.timeseries.GetTimeSeries(con, test_path) dfs.append(df) df = studies.PostProcess(pandas.concat(dfs, ignore_index=True)) with utils.OpenWrite(args.output_csv) as f: df.to_csv(f, index=False) print 'Wrote timeseries data to:', args.output_csv
def testWorkerPoolRun(self): tempdir = tempfile.mkdtemp() try: args = argparse.Namespace() args.database_file = os.path.join(tempdir, 'test.db') args.processes = 3 items = range(20) # We'll write these in the database. con = sqlite3.connect(args.database_file) pandas_sqlite.CreateTableIfNotExists(con, 'items', [('item', int)]) with open(os.devnull, 'w') as devnull: worker_pool.Run('Processing:', TestWorker, args, items, stream=devnull) df = pandas.read_sql('SELECT * FROM items', con) # Check all of our items were written. self.assertItemsEqual(df['item'], items) finally: shutil.rmtree(tempdir)