def __init__(self, filename): self.filename = check_file_location(filename, "files") self.handle = pyfits.open(self.filename) if "MATRIX" in self.handle: self.mat_key = "MATRIX" elif "SPECRESP MATRIX" in self.handle: self.mat_key = "SPECRESP MATRIX" else: raise RuntimeError("Cannot find the response matrix in the RMF " "file %s! " % filename + "It should be named " "\"MATRIX\" or \"SPECRESP MATRIX\".") self.data = self.handle[self.mat_key].data self.header = self.handle[self.mat_key].header self.num_mat_columns = len(self.handle[self.mat_key].columns) self.ebounds = self.handle["EBOUNDS"].data self.ebounds_header = self.handle["EBOUNDS"].header self.weights = np.array([w.sum() for w in self.data["MATRIX"]]) self.elo = self.data["ENERG_LO"] self.ehi = self.data["ENERG_HI"] self.n_de = self.elo.size self.n_ch = len(self.ebounds["CHANNEL"]) num = 0 for i in range(1, self.num_mat_columns + 1): if self.header["TTYPE%d" % i] == "F_CHAN": num = i break self.cmin = self.header["TLMIN%d" % num] self.cmax = self.header["TLMAX%d" % num]
def __init__(self, filename): self.filename = check_file_location(filename, "files") f = pyfits.open(self.filename) self.elo = f["SPECRESP"].data.field("ENERG_LO") self.ehi = f["SPECRESP"].data.field("ENERG_HI") self.emid = 0.5 * (self.elo + self.ehi) self.eff_area = np.nan_to_num( f["SPECRESP"].data.field("SPECRESP")).astype("float64") self.max_area = self.eff_area.max() f.close()
def tbabs_cross_section(E): global _tbabs_emid global _tbabs_sigma global _tbabs_spline if _tbabs_spline is None: filename = check_file_location("tbabs_table.h5", "files") f = h5py.File(filename, "r") _tbabs_sigma = f["cross_section"][:] nbins = _tbabs_sigma.size ebins = np.linspace(f["emin"].value, f["emax"].value, nbins+1) f.close() _tbabs_emid = 0.5*(ebins[1:]+ebins[:-1]) _tbabs_spline = InterpolatedUnivariateSpline(_tbabs_emid, _tbabs_sigma, ext=1) return _tbabs_spline(E)
def add_background(bkgnd_name, event_params, rot_mat, focal_length=None, prng=np.random): fov = event_params["fov"] bkgnd_spec = background_registry[bkgnd_name] # Generate background events bkg_events = {} # If this is an astrophysical background, detect the events with the ARF used # for the observation, otherwise it's a particle background and assume area = 1. if bkgnd_spec.bkgnd_type == "astrophysical": arf = AuxiliaryResponseFile( check_file_location(event_params["arf"], "files")) area = arf.interpolate_area(bkgnd_spec.emid).value else: area = (focal_length / 10.0)**2 bkg_events["energy"] = bkgnd_spec.generate_energies( event_params["exposure_time"], area, fov, prng=prng) n_events = bkg_events["energy"].size bkg_events['chipx'] = np.round( prng.uniform(low=1.0, high=event_params['num_pixels'], size=n_events)) bkg_events['chipy'] = np.round( prng.uniform(low=1.0, high=event_params['num_pixels'], size=n_events)) bkg_events["detx"] = np.round( bkg_events["chipx"] - event_params['pix_center'][0] + prng.uniform(low=-0.5, high=0.5, size=n_events)) bkg_events["dety"] = np.round( bkg_events["chipy"] - event_params['pix_center'][1] + prng.uniform(low=-0.5, high=0.5, size=n_events)) pix = np.dot(rot_mat, np.array([bkg_events["detx"], bkg_events["dety"]])) bkg_events["xpix"] = pix[0, :] + event_params['pix_center'][0] bkg_events["ypix"] = pix[1, :] + event_params['pix_center'][1] return bkg_events
def instrument_simulator(simput_file, out_file, exp_time, instrument, sky_center, clobber=False, dither_shape="square", dither_size=16.0, roll_angle=0.0, astro_bkgnd=True, instr_bkgnd=True, prng=np.random): """ Take unconvolved events in a SIMPUT catalog and create an event file from them. This function does the following: 1. Determines which events are observed using the ARF 2. Pixelizes the events, applying PSF effects and dithering 3. Adds instrumental and astrophysical background events 4. Determines energy channels using the RMF 5. Writes the events to a file Parameters ---------- simput_file : string The SIMPUT catalog file to be used as input. out_file : string The name of the event file to be written. exp_time : float The exposure time to use, in seconds. instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. Can also be a JSON file with a new instrument specification. If this is the case, it will be loaded into the instrument registry. sky_center : array, tuple, or list The center RA, Dec coordinates of the observation, in degrees. clobber : boolean, optional Whether or not to clobber an existing file with the same name. Default: False dither_shape : string The shape of the dither. Currently "circle" or "square" Default: "square" dither_size : float The size of the dither in arcseconds. Width of square or radius of circle. Default: 16.0 roll_angle : float The roll angle of the observation in degrees. Default: 0.0 astro_bkgnd : boolean, optional Whether or not to include astrophysical background. Default: True instr_bkgnd : boolean, optional Whether or not to include instrumental/particle background. Default: True prng : :class:`~numpy.random.RandomState` object or :mod:`~numpy.random`, optional A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is the :mod:`numpy.random` module. Examples -------- >>> instrument_simulator("sloshing_simput.fits", "sloshing_evt.fits", "hdxi_3x10", ... [30., 45.], clobber=True) """ event_list, parameters = read_simput_catalog(simput_file) try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) arf_file = check_file_location(instrument_spec["arf"], "files") rmf_file = check_file_location(instrument_spec["rmf"], "files") arf = AuxiliaryResponseFile(arf_file) rmf = RedistributionMatrixFile(rmf_file) nx = instrument_spec["num_pixels"] plate_scale = instrument_spec["fov"] / nx / 60. # arcmin to deg plate_scale_arcsec = plate_scale * 3600.0 dsize = dither_size / plate_scale_arcsec event_params = {} event_params["exposure_time"] = exp_time event_params["arf"] = os.path.split(arf.filename)[-1] event_params["sky_center"] = sky_center event_params["pix_center"] = np.array([0.5 * (nx + 1)] * 2) event_params["num_pixels"] = nx event_params["plate_scale"] = plate_scale event_params["rmf"] = os.path.split(rmf.filename)[-1] event_params["channel_type"] = rmf.header["CHANTYPE"] event_params["telescope"] = rmf.header["TELESCOP"] event_params["instrument"] = rmf.header["INSTRUME"] event_params["mission"] = rmf.header.get("MISSION", "") event_params["nchan"] = rmf.ebounds_header["DETCHANS"] event_params["roll_angle"] = roll_angle event_params["fov"] = instrument_spec["fov"] num = 0 for i in range(1, rmf.num_mat_columns + 1): if rmf.header["TTYPE%d" % i] == "F_CHAN": num = i break event_params["chan_lim"] = [ rmf.header["TLMIN%d" % num], rmf.header["TLMAX%d" % num] ] w = pywcs.WCS(naxis=2) w.wcs.crval = event_params["sky_center"] w.wcs.crpix = event_params["pix_center"] w.wcs.cdelt = [-plate_scale, plate_scale] w.wcs.ctype = ["RA---TAN", "DEC--TAN"] w.wcs.cunit = ["deg"] * 2 roll_angle = np.deg2rad(roll_angle) rot_mat = np.array([[np.sin(roll_angle), -np.cos(roll_angle)], [-np.cos(roll_angle), -np.sin(roll_angle)]]) all_events = {} first = True for i, evts in enumerate(event_list): mylog.info("Detecting events from source %d" % (i + 1)) # Step 1: Use ARF to determine which photons are observed mylog.info("Applying energy-dependent effective area from %s." % event_params["arf"]) refband = [parameters["emin"][i], parameters["emax"][i]] events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng) n_evt = events["energy"].size if n_evt == 0: mylog.warning("No events were observed for this source!!!") else: # Step 2: Assign pixel coordinates to events. Apply dithering and # PSF. Clip events that don't fall within the detection region. mylog.info("Pixeling events.") # Convert RA, Dec to pixel coordinates xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1) xpix -= event_params["pix_center"][0] ypix -= event_params["pix_center"][1] events.pop("ra") events.pop("dec") n_evt = xpix.size # Dither pixel coordinates x_offset = np.zeros(n_evt) y_offset = np.zeros(n_evt) if dither_shape == "circle": r = dsize * np.sqrt(prng.uniform(size=n_evt)) theta = 2. * np.pi * prng.uniform(size=n_evt) x_offset = r * np.cos(theta) y_offset = r * np.sin(theta) elif dither_shape == "square": x_offset = dsize * prng.uniform(low=-0.5, high=0.5, size=n_evt) y_offset = dsize * prng.uniform(low=-0.5, high=0.5, size=n_evt) xpix -= x_offset ypix -= y_offset # Rotate physical coordinates to detector coordinates det = np.dot(rot_mat, np.array([xpix, ypix])) detx = det[0, :] dety = det[1, :] # PSF scattering of detector coordinates psf_type, psf_spec = instrument_spec["psf"] if psf_type == "gaussian": sigma = psf_spec / sigma_to_fwhm / plate_scale_arcsec detx += prng.normal(loc=0.0, scale=sigma, size=n_evt) dety += prng.normal(loc=0.0, scale=sigma, size=n_evt) else: raise NotImplementedError("PSF type %s not implemented!" % psf_type) # Convert detector coordinates to chip coordinates events["chipx"] = np.round(detx + event_params['pix_center'][0]) events["chipy"] = np.round(dety + event_params['pix_center'][1]) # Throw out events that don't fall on the chip keepx = np.logical_and(events["chipx"] >= 1.0, events["chipx"] <= nx) keepy = np.logical_and(events["chipy"] >= 1.0, events["chipy"] <= nx) keep = np.logical_and(keepx, keepy) mylog.info("%d events were rejected because " % (n_evt - keep.sum()) + "they fall outside the field of view.") n_evt = keep.sum() if n_evt == 0: mylog.warning( "No events are within the field of view for this source!!!" ) else: for key in events: events[key] = events[key][keep] # Convert chip coordinates back to detector coordinates events["detx"] = np.round( events["chipx"] - event_params['pix_center'][0] + prng.uniform(low=-0.5, high=0.5, size=n_evt)) events["dety"] = np.round( events["chipy"] - event_params['pix_center'][1] + prng.uniform(low=-0.5, high=0.5, size=n_evt)) # Convert detector coordinates back to pixel coordinates pix = np.dot(rot_mat, np.array([events["detx"], events["dety"]])) events["xpix"] = pix[ 0, :] + event_params['pix_center'][0] + x_offset[keep] events["ypix"] = pix[ 1, :] + event_params['pix_center'][1] + y_offset[keep] if n_evt > 0: for key in events: if first: all_events[key] = events[key] else: all_events[key] = np.concatenate( [all_events[key], events[key]]) first = False if all_events["energy"].size == 0: mylog.warning( "No events from any of the sources in the catalog were detected!") # Step 3: Add astrophysical background if astro_bkgnd: mylog.info("Adding in astrophysical background.") bkg_events = add_background(astro_bkgnd, event_params, rot_mat, prng=prng) for key in all_events: all_events[key] = np.concatenate( [all_events[key], bkg_events[key]]) # Step 4: Add particle background if instr_bkgnd: mylog.info("Adding in instrumental background.") bkg_events = add_background( instrument_spec["bkgnd"], event_params, rot_mat, prng=prng, focal_length=instrument_spec["focal_length"]) for key in all_events: all_events[key] = np.concatenate( [all_events[key], bkg_events[key]]) if all_events["energy"].size == 0: raise RuntimeError("No events were detected!!!") # Step 5: Scatter energies with RMF if all_events["energy"].size > 0: mylog.info("Scattering energies with RMF %s." % event_params['rmf']) all_events = rmf.scatter_energies(all_events, prng=prng) # Step 6: Add times to events all_events['time'] = np.random.uniform(size=all_events["energy"].size, low=0.0, high=event_params["exposure_time"]) write_event_file(all_events, event_params, out_file, clobber=clobber)
def simulate_spectrum(spec, instrument, exp_time, out_file, overwrite=False, prng=None): """ Generate a PI or PHA spectrum from a :class:`~soxs.spectra.Spectrum` by convolving it with responses. To be used if one wants to create a spectrum without worrying about spatial response. Similar to XSPEC's "fakeit". Parameters ---------- spec : :class:`~soxs.spectra.Spectrum` The spectrum to be convolved. instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time in seconds. out_file : string The file to write the spectrum to. overwrite : boolean, optional Whether or not to overwrite an existing file. Default: False prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. Examples -------- >>> spec = soxs.Spectrum.from_file("my_spectrum.txt") >>> soxs.simulate_spectrum(spec, "mucal", 100000.0, ... "my_spec.pi", overwrite=True) """ from soxs.events import write_spectrum from soxs.instrument import RedistributionMatrixFile, \ AuxiliaryResponseFile from soxs.spectra import ConvolvedSpectrum prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) arf_file = check_file_location(instrument_spec["arf"], "files") rmf_file = check_file_location(instrument_spec["rmf"], "files") arf = AuxiliaryResponseFile(arf_file) rmf = RedistributionMatrixFile(rmf_file) cspec = ConvolvedSpectrum(spec, arf) events = {} events["energy"] = cspec.generate_energies(exp_time, prng=prng).value events = rmf.scatter_energies(events, prng=prng) events["arf"] = arf.filename events["rmf"] = rmf.filename events["exposure_time"] = exp_time events["channel_type"] = rmf.header["CHANTYPE"] events["telescope"] = rmf.header["TELESCOP"] events["instrument"] = rmf.header["INSTRUME"] events["mission"] = rmf.header.get("MISSION", "") write_spectrum(events, out_file, overwrite=overwrite)
def make_background(exp_time, instrument, sky_center, foreground=True, ptsrc_bkgnd=True, instr_bkgnd=True, no_dither=False, dither_params=None, roll_angle=0.0, subpixel_res=False, input_sources=None, absorb_model="wabs", nH=0.05, prng=None): """ Make background events. Parameters ---------- exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time to use, in seconds. instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. sky_center : array, tuple, or list The center RA, Dec coordinates of the observation, in degrees. foreground : boolean, optional Whether or not to include the Galactic foreground. Default: True instr_bkgnd : boolean, optional Whether or not to include the instrumental background. Default: True no_dither : boolean, optional If True, turn off dithering entirely. Default: False dither_params : array-like of floats, optional The parameters to use to control the size and period of the dither pattern. The first two numbers are the dither amplitude in x and y detector coordinates in arcseconds, and the second two numbers are the dither period in x and y detector coordinates in seconds. Default: [8.0, 8.0, 1000.0, 707.0]. ptsrc_bkgnd : boolean, optional Whether or not to include the point-source background. Default: True Default: 0.05 roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The roll angle of the observation in degrees. Default: 0.0 subpixel_res: boolean, optional If True, event positions are not randomized within the pixels within which they are detected. Default: False input_sources : string, optional If set to a filename, input the point source positions, fluxes, and spectral indices from an ASCII table instead of generating them. Default: None absorb_model : string, optional The absorption model to use, "wabs" or "tbabs". Default: "wabs" nH : float, optional The hydrogen column in units of 10**22 atoms/cm**2. Default: 0.05 prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ from soxs.background import make_instrument_background, \ make_foreground, make_ptsrc_background prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") roll_angle = parse_value(roll_angle, "deg") try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) fov = instrument_spec["fov"] input_events = defaultdict(list) arf_file = check_file_location(instrument_spec["arf"], "files") arf = AuxiliaryResponseFile(arf_file) rmf_file = check_file_location(instrument_spec["rmf"], "files") rmf = RedistributionMatrixFile(rmf_file) if ptsrc_bkgnd: mylog.info("Adding in point-source background.") ptsrc_events = make_ptsrc_background(exp_time, fov, sky_center, input_sources=input_sources, absorb_model=absorb_model, nH=nH, prng=prng) for key in ["ra", "dec", "energy"]: input_events[key].append(ptsrc_events[key]) input_events["flux"].append(ptsrc_events["flux"]) input_events["emin"].append(ptsrc_events["energy"].min()) input_events["emax"].append(ptsrc_events["energy"].max()) input_events["sources"].append("ptsrc_bkgnd") events, event_params = generate_events(input_events, exp_time, instrument, sky_center, no_dither=no_dither, dither_params=dither_params, roll_angle=roll_angle, subpixel_res=subpixel_res, prng=prng) mylog.info("Generated %d photons from the point-source background." % len(events["energy"])) else: nx = instrument_spec["num_pixels"] events = defaultdict(list) if not instrument_spec["dither"]: dither_on = False else: dither_on = not no_dither if dither_params is None: dither_params = [8.0, 8.0, 1000.0, 707.0] dither_dict = { "x_amp": dither_params[0], "y_amp": dither_params[1], "x_period": dither_params[2], "y_period": dither_params[3], "dither_on": dither_on, "plate_scale": instrument_spec["fov"] / nx * 60.0 } event_params = { "exposure_time": exp_time, "fov": instrument_spec["fov"], "num_pixels": nx, "pix_center": np.array([0.5 * (2 * nx + 1)] * 2), "channel_type": rmf.header["CHANTYPE"], "sky_center": sky_center, "dither_params": dither_dict, "plate_scale": instrument_spec["fov"] / nx / 60.0, "chan_lim": [rmf.cmin, rmf.cmax], "rmf": rmf_file, "arf": arf_file, "telescope": rmf.header["TELESCOP"], "instrument": instrument_spec['name'], "mission": rmf.header.get("MISSION", ""), "nchan": rmf.ebounds_header["DETCHANS"], "roll_angle": roll_angle, "aimpt_coords": instrument_spec["aimpt_coords"] } if "chips" not in event_params: event_params["chips"] = instrument_spec["chips"] if foreground: mylog.info("Adding in astrophysical foreground.") bkg_events = make_foreground(event_params, arf, rmf, prng=prng) for key in bkg_events: events[key] = np.concatenate([events[key], bkg_events[key]]) if instr_bkgnd and instrument_spec["bkgnd"] is not None: mylog.info("Adding in instrumental background.") bkg_events = make_instrument_background( instrument_spec["bkgnd"], event_params, instrument_spec["focal_length"], rmf, prng=prng) for key in bkg_events: events[key] = np.concatenate([events[key], bkg_events[key]]) return events, event_params
def generate_events(input_events, exp_time, instrument, sky_center, no_dither=False, dither_params=None, roll_angle=0.0, subpixel_res=False, prng=None): """ Take unconvolved events and convolve them with instrumental responses. This function does the following: 1. Determines which events are observed using the ARF 2. Pixelizes the events, applying PSF effects and dithering 3. Determines energy channels using the RMF This function is not meant to be called by the end-user but is used by the :func:`~soxs.instrument.instrument_simulator` function. Parameters ---------- input_events : string, dict, or None The unconvolved events to be used as input. Can be one of the following: 1. The name of a SIMPUT catalog file. 2. A Python dictionary containing the following items: "ra": A NumPy array of right ascension values in degrees. "dec": A NumPy array of declination values in degrees. "energy": A NumPy array of energy values in keV. "flux": The flux of the entire source, in units of erg/cm**2/s. out_file : string The name of the event file to be written. exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time to use, in seconds. instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. sky_center : array, tuple, or list The center RA, Dec coordinates of the observation, in degrees. no_dither : boolean, optional If True, turn off dithering entirely. Default: False dither_params : array-like of floats, optional The parameters to use to control the size and period of the dither pattern. The first two numbers are the dither amplitude in x and y detector coordinates in arcseconds, and the second two numbers are the dither period in x and y detector coordinates in seconds. Default: [8.0, 8.0, 1000.0, 707.0]. roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The roll angle of the observation in degrees. Default: 0.0 subpixel_res: boolean, optional If True, event positions are not randomized within the pixels within which they are detected. Default: False prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ import pyregion._region_filter as rfilter exp_time = parse_value(exp_time, "s") roll_angle = parse_value(roll_angle, "deg") prng = parse_prng(prng) if isinstance(input_events, dict): parameters = {} for key in ["flux", "emin", "emax", "sources"]: parameters[key] = input_events[key] event_list = [] for i in range(len(parameters["flux"])): edict = {} for key in ["ra", "dec", "energy"]: edict[key] = input_events[key][i] event_list.append(edict) elif isinstance(input_events, string_types): # Assume this is a SIMPUT catalog event_list, parameters = read_simput_catalog(input_events) try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) arf_file = check_file_location(instrument_spec["arf"], "files") rmf_file = check_file_location(instrument_spec["rmf"], "files") arf = AuxiliaryResponseFile(arf_file) rmf = RedistributionMatrixFile(rmf_file) nx = instrument_spec["num_pixels"] plate_scale = instrument_spec["fov"] / nx / 60. # arcmin to deg plate_scale_arcsec = plate_scale * 3600.0 if not instrument_spec["dither"]: dither_on = False else: dither_on = not no_dither if dither_params is None: dither_params = [8.0, 8.0, 1000.0, 707.0] dither_dict = { "x_amp": dither_params[0], "y_amp": dither_params[1], "x_period": dither_params[2], "y_period": dither_params[3], "dither_on": dither_on, "plate_scale": plate_scale_arcsec } event_params = {} event_params["exposure_time"] = exp_time event_params["arf"] = arf.filename event_params["sky_center"] = sky_center event_params["pix_center"] = np.array([0.5 * (2 * nx + 1)] * 2) event_params["num_pixels"] = nx event_params["plate_scale"] = plate_scale event_params["rmf"] = rmf.filename event_params["channel_type"] = rmf.header["CHANTYPE"] event_params["telescope"] = rmf.header["TELESCOP"] event_params["instrument"] = instrument_spec['name'] event_params["mission"] = rmf.header.get("MISSION", "") event_params["nchan"] = rmf.ebounds_header["DETCHANS"] event_params["roll_angle"] = roll_angle event_params["fov"] = instrument_spec["fov"] event_params["chan_lim"] = [rmf.cmin, rmf.cmax] event_params["chips"] = instrument_spec["chips"] event_params["dither_params"] = dither_dict event_params["aimpt_coords"] = instrument_spec["aimpt_coords"] w = pywcs.WCS(naxis=2) w.wcs.crval = event_params["sky_center"] w.wcs.crpix = event_params["pix_center"] w.wcs.cdelt = [-plate_scale, plate_scale] w.wcs.ctype = ["RA---TAN", "DEC--TAN"] w.wcs.cunit = ["deg"] * 2 rot_mat = get_rot_mat(roll_angle) all_events = defaultdict(list) for i, evts in enumerate(event_list): mylog.info("Detecting events from source %s." % parameters["sources"][i]) # Step 1: Use ARF to determine which photons are observed mylog.info("Applying energy-dependent effective area from %s." % os.path.split(arf.filename)[-1]) refband = [parameters["emin"][i], parameters["emax"][i]] events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng) n_evt = events["energy"].size if n_evt == 0: mylog.warning("No events were observed for this source!!!") else: # Step 2: Assign pixel coordinates to events. Apply dithering and # PSF. Clip events that don't fall within the detection region. mylog.info("Pixeling events.") # Convert RA, Dec to pixel coordinates xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1) xpix -= event_params["pix_center"][0] ypix -= event_params["pix_center"][1] events.pop("ra") events.pop("dec") n_evt = xpix.size # Rotate physical coordinates to detector coordinates det = np.dot(rot_mat, np.array([xpix, ypix])) detx = det[0, :] + event_params["aimpt_coords"][0] dety = det[1, :] + event_params["aimpt_coords"][1] # Add times to events events['time'] = prng.uniform(size=n_evt, low=0.0, high=event_params["exposure_time"]) # Apply dithering x_offset, y_offset = perform_dither(events["time"], dither_dict) detx -= x_offset dety -= y_offset # PSF scattering of detector coordinates if instrument_spec["psf"] is not None: psf_type, psf_spec = instrument_spec["psf"] if psf_type == "gaussian": sigma = psf_spec / sigma_to_fwhm / plate_scale_arcsec detx += prng.normal(loc=0.0, scale=sigma, size=n_evt) dety += prng.normal(loc=0.0, scale=sigma, size=n_evt) else: raise NotImplementedError("PSF type %s not implemented!" % psf_type) # Convert detector coordinates to chip coordinates. # Throw out events that don't fall on any chip. cx = np.trunc(detx) + 0.5 * np.sign(detx) cy = np.trunc(dety) + 0.5 * np.sign(dety) if event_params["chips"] is None: events["chip_id"] = np.zeros(n_evt, dtype='int') keepx = np.logical_and(cx >= -0.5 * nx, cx <= 0.5 * nx) keepy = np.logical_and(cy >= -0.5 * nx, cy <= 0.5 * nx) keep = np.logical_and(keepx, keepy) else: events["chip_id"] = -np.ones(n_evt, dtype='int') for i, chip in enumerate(event_params["chips"]): thisc = np.ones(n_evt, dtype='bool') rtype = chip[0] args = chip[1:] r = getattr(rfilter, rtype)(*args) inside = r.inside(cx, cy) thisc = np.logical_and(thisc, inside) events["chip_id"][thisc] = i keep = events["chip_id"] > -1 mylog.info("%d events were rejected because " % (n_evt - keep.sum()) + "they do not fall on any CCD.") n_evt = keep.sum() if n_evt == 0: mylog.warning( "No events are within the field of view for this source!!!" ) else: # Keep only those events which fall on a chip for key in events: events[key] = events[key][keep] # Convert chip coordinates back to detector coordinates, unless the # user has specified that they want subpixel resolution if subpixel_res: events["detx"] = detx[keep] events["dety"] = dety[keep] else: events["detx"] = cx[keep] + prng.uniform( low=-0.5, high=0.5, size=n_evt) events["dety"] = cy[keep] + prng.uniform( low=-0.5, high=0.5, size=n_evt) # Convert detector coordinates back to pixel coordinates by # adding the dither offsets back in and applying the rotation # matrix again det = np.array([ events["detx"] + x_offset[keep] - event_params["aimpt_coords"][0], events["dety"] + y_offset[keep] - event_params["aimpt_coords"][1] ]) pix = np.dot(rot_mat.T, det) events["xpix"] = pix[0, :] + event_params['pix_center'][0] events["ypix"] = pix[1, :] + event_params['pix_center'][1] if n_evt > 0: for key in events: all_events[key] = np.concatenate( [all_events[key], events[key]]) if len(all_events["energy"]) == 0: mylog.warning( "No events from any of the sources in the catalog were detected!") for key in [ "xpix", "ypix", "detx", "dety", "time", "chip_id", event_params["channel_type"] ]: all_events[key] = np.array([]) else: # Step 4: Scatter energies with RMF mylog.info("Scattering energies with RMF %s." % os.path.split(rmf.filename)[-1]) all_events = rmf.scatter_energies(all_events, prng=prng) return all_events, event_params