def prepare_outdir_log(outdir='.', verbose=False, is_main=True): """ Prepares output directory and sets up log file. Arguments: outdir : Output directory verbose : (boolean) Whether to write to screen is_main : (boolean) If using multiple cores, some tasks only need to be performed once, not by all cores Returns: log : instance of Logger class verbose : (boolean) New version of Logger can write to screen simultaneously """ # Create directory if it doesn't exist if is_main: if os.path.isdir(outdir): sxprint("Writing to output directory: %s" % outdir) else: sxprint("Created output directory: %s" % outdir) os.makedirs( outdir) # os.mkdir() can only operate one directory deep sp_global_def.write_command(outdir) logname = "log_" + datetime.now().strftime("%Y%m%d_%H%M%S") + ".txt" logname = os.path.join(outdir, logname) #if global_def.LOGFILE: #global_def.LOGFILE = logname #print('LOGFILE', global_def.LOGFILE) #exit() # May be using old version of logger.py try: if verbose: log = Logger(base_logger=BaseLogger_Files(), base_logger2=BaseLogger_Print(), file_name=logname) verbose = False # logger output will be echoed to screen else: log = Logger(base_logger=BaseLogger_Files(), file_name=logname) except TypeError: if is_main: sxprint("WARNING: Using old sp_logger.py library") log = Logger(base_logger=BaseLogger_Files()) #, file_name=logname) logname = 'log.txt' if is_main: sxprint("Writing log file to %s\n" % logname) if is_main: progbase = os.path.basename(__file__).split('.')[0].upper() #print('progbase', progbase) #exit() length = len(progbase) + 4 log.add("\n" + " " * TIMESTAMP_LENGTH + "*" * length + "\n" + " " * TIMESTAMP_LENGTH + "* " + progbase + " *\n" + " " * TIMESTAMP_LENGTH + "*" * length) return log, verbose
def prepare_log(outdir='.', verbose=False, main=True): """ Prepare log file. Arguments: outdir : Output directory verbose : (boolean) Whether to write additional information to screen main : (boolean) Whether main MPI process Returns: log : Instance of Logger class verbose : (boolean) Updates flag to False if Logger class can mirror output to screen """ TIMESTAMP_LENGTH = 23 logname = "log_" + datetime.now().strftime("%Y%m%d_%H%M%S") + ".txt" logname = os.path.join(outdir, logname) # May be using old version of logger.py try: if verbose: log = Logger(base_logger=BaseLogger_Files(), base_logger2=BaseLogger_Print(), file_name=logname) verbose = False # logger output will be echoed to screen else: log = Logger(base_logger=BaseLogger_Files(), file_name=logname) except TypeError: print("WARNING: Using old sp_logger.py library") log = Logger(base_logger=BaseLogger_Files()) #, file_name=logname) logname = 'log.txt' print("Writing log file to %s" % logname) if main: progbase = os.path.basename(__file__).split('.')[0].upper() length = len(progbase) + 4 log.add("\n" + " " * TIMESTAMP_LENGTH + "*" * length + "\n" + " " * TIMESTAMP_LENGTH + "* " + progbase + " *\n" + " " * TIMESTAMP_LENGTH + "*" * length) return log, verbose
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option("--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)") parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)") parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)" ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)" ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)") parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)") parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)" ) #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") #parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### from mpi import mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX #from mpi import * from sp_applications import MPI_start_end from sp_reconstruction import recons3d_em, recons3d_em_MPI from sp_reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from sp_utilities import print_begin_msg, print_end_msg, print_msg from sp_utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv from sp_utilities import bcast_EMData_to_all, bcast_number_to_all from sp_utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(MPI_COMM_WORLD) > 1: ERROR("Cannot use more than one CPU for symmetry preparation") if not os.path.exists(current_output_dir): os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) from sp_logger import Logger, BaseLogger_Files if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if (sym == "c1"): ERROR("There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if (instack[:4] != "bdb:"): #if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" delete_bdb(stack) junk = cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMUtil.get_all_attributes(stack, 'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): #Qfile = "Q%1d"%k #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = os.path.join(current_output_dir, "Q%1d" % k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:" + Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() #if options.output_dir =="./": delete_bdb("bdb:sdata") delete_bdb("bdb:" + current_output_dir + "/" + "sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sxprint(sdata) junk = cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry", sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: from sp_fundamentals import window2d myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL) myid_on_node = mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi_comm_split( MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \ shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm) overhead_loading = options.overhead * number_of_proc #memory_per_node = options.memory_per_node #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time() # obsolete flags options.MPI = True #options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", myid=myid) #if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid) #if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) #if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) #if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: ERROR("Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: ERROR("Target window size should be always larger than zero", myid=myid) if myid == main_node: img = get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if (min(nx, ny) < current_window): keepgoing = 0 keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD) if keepgoing == 0: ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid) import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not os.path.exists(current_output_dir): os.makedirs(current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp #nvec = options.nvec radiuspca = options.radiuspca from sp_logger import Logger, BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if (i != options.sym): ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid) except: ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid) from sp_utilities import get_symt i = len(get_symt(options.sym)) if ((nima / i) * i != nima): ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid) symbaselen = nima / i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) nnxo = bcast_number_to_all(nnxo) nnyo = bcast_number_to_all(nnyo) if current_window > max(nx, ny): ERROR("Window size is larger than the original image size") if current_decimate == 1.: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = bcast_number_to_all(symbaselen) # check FFT prime number from sp_fundamentals import smallprime is_fft_friendly = (nx == smallprime(nx)) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.: nx = smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = smallprime(int(nx * current_decimate + 0.5)) current_decimate = float(nx) / nnxo ny = nx if (myid == main_node): log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(nx / current_decimate + 0.5) if (myid == main_node): log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = nx / 2 - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from sp_projection import prep_vol, prgs from sp_statistics import im_diff from sp_utilities import get_im, model_circle, get_params_proj, set_params_proj from sp_utilities import get_ctf, generate_ctf from sp_filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: # 2D variance images have no shifts #varList = EMData.read_images(stack, range(img_begin, img_end)) from EMAN2 import Region for index_of_particle in range(img_begin, img_end): image = get_im(stack, index_of_proj) if current_window > 0: varList.append( fdecimate( window2d(image, current_window, current_window), nx, ny)) else: varList.append(fdecimate(image, nx, ny)) else: from sp_utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from sp_utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from sp_utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv from sp_applications import pca from sp_statistics import avgvar, avgvar_ctf, ccc from sp_filter import filt_tanl from sp_morphology import threshold, square_root from sp_projection import project, prep_vol, prgs from sets import Set from sp_utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send import numpy as np if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in range(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]) ]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % ((time() - t2) / 60.)) log_main.add("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] #if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2. + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = nx**3 * 4. * 8 / 1.e9 vol_size1 = 2. * nnxo**3 * 4. * 8 / 1.e9 proj_size = nnxo * nnyo * len( proj_list) * 4. * 2. / 1.e9 # both aveList and varList orig_data_size = nnxo * nnyo * 4. * tnumber / 1.e9 reduced_data_size = nx * nx * 4. * tnumber / 1.e9 full_data = np.full((number_of_proc, 2), -1., dtype=np.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD) full_data[np.where(dummy > -1)] = dummy[np.where( dummy > -1)] del dummy mpi_barrier(MPI_COMM_WORLD) full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD) # find the CPU with heaviest load minindx = np.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\ (total_mem[1] + overhead_loading)) del full_data mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): #image = get_im(stack, all_proj[index_of_proj]) if (current_window > 0): imgdata[index_of_proj] = fdecimate( window2d(get_im(stack, all_proj[index_of_proj]), current_window, current_window), nx, ny) else: imgdata[index_of_proj] = fdecimate( get_im(stack, all_proj[index_of_proj]), nx, ny) if (current_decimate > 0.0 and options.CTF): ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = ctf.apix / current_decimate imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add(" ...... %6.2f%% " % (index_of_proj / float(len(all_proj)) * 100.)) mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % ((time() - ttt) / 60.)) log_main.add("Wait untill reading on all CPUs done...") ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from sp_applications import prepare_2d_forPCA from sp_utilities import model_blank from EMAN2 import Transform if not options.no_norm: mask = model_circle(nx / 2 - 2, nx, nx) if options.CTF: from sp_utilities import pad from sp_filter import filt_ctf from sp_filter import filt_tanl if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time() inner = nx // 2 - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"], dpar[ "theta"], dpar[ "psi"], -dpar["tx"] * current_decimate, -dpar[ "ty"] * current_decimate grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0) imgdata[mj].set_attr( "xform.align2d", Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0 })) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = aves_wiener(grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = square_root(threshold(var)) set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] ''' if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in range(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ ''' if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (i / float(len(proj_list)) * 100.)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi_barrier(MPI_COMM_WORLD) if (myid == heavy_load_myid): log_main.add("Computing aveList and varList took %12.1f [m]" % ((time() - ttt) / 60.)) xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD) if (myid == main_node): write_text_row([str(entry) for entry in xform_proj_for_2D], os.path.join(current_output_dir, "params.txt")) del xform_proj_for_2D mpi_barrier(MPI_COMM_WORLD) if options.ave2D: from sp_fundamentals import fpol from sp_applications import header if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( os.path.join(current_output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol = fpol(ave, nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if myid == main_node: header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport=os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.ave3D: from sp_fundamentals import fpol t5 = time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = resample(ave3D, 1. / current_decimate) ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size set_pixel_size(ave3D, 1.0) ave3D.write_image( os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % ((time() - t5) / 60.0)) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi_barrier(MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList ''' if nvec > 0: for k in range(nvec): if myid == main_node:log_main.add("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in range(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) log_main.add(" Eigenvector: ",k," number changed ",int(icont[0])) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d ''' if options.ave3D: del ave3D if options.var2D: from sp_fundamentals import fpol from sp_applications import header if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = fpol(varList[im], nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) tmpvol = fpol(ave, nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.var2D), km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(varList)): send_EMData(varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if myid == main_node: from sp_applications import header header(os.path.join(current_output_dir, options.var2D), params='xform.projection', fimport=os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from sp_fundamentals import fpol if current_decimate != 1.0: res = resample(res, 1. / current_decimate) res = fpol(res, nnxo, nnxo, nnxo) set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % ((time() - t6) / 60.0)) log_main.add("Total computation time %f12.1 [m]" % ((time() - t0) / 60.0)) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False
def main(): from sp_logger import Logger, BaseLogger_Files arglist = [] i = 0 while (i < len(sys.argv)): if sys.argv[i] == '-p4pg': i = i + 2 elif sys.argv[i] == '-p4wd': i = i + 2 else: arglist.append(sys.argv[i]) i = i + 1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_filter=.25 --seed=random_seed" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--focus", type="string", default='', help="bineary 3D mask for focused clustering ") parser.add_option( "--ir", type="int", default=1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option( "--radius", type="int", default=-1, help= "particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)" ) parser.add_option("--maxit", type="int", default=25, help="maximum number of iteration") parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option( "--yr", type="string", default='-1', help= "range for translation search in y direction, search is +/-yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default='0.25', help= "step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr " ) parser.add_option("--delta", type="string", default='2', help="angular step of reference projections") parser.add_option("--an", type="string", default='-1', help="angular neighborhood for local searches") parser.add_option( "--center", type="int", default=0, help= "0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)" ) parser.add_option( "--nassign", type="int", default=1, help= "number of reassignment iterations performed for each angular step (set to 3) " ) parser.add_option( "--nrefine", type="int", default=0, help= "number of alignment iterations performed for each angular step (set to 0)" ) parser.add_option("--CTF", action="store_true", default=False, help="do CTF correction during clustring") parser.add_option( "--stoprnct", type="float", default=3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type="string", default='c1', help="symmetry of the structure ") parser.add_option("--function", type="string", default='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type="int", default=3, help="number of independent run") parser.add_option("--number_of_images_per_group", type="int", default=1000, help="number of groups") parser.add_option( "--low_pass_filter", type="float", default=-1.0, help= "absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type="int", default=64, help="initial image size for sorting") parser.add_option("--unaccounted", action="store_true", default=False, help="reconstruct the unaccounted images") parser.add_option( "--seed", type="int", default=-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type="int", default=500, help="minimum members for identified group") parser.add_option("--sausage", action="store_true", default=False, help="way of filter volume") parser.add_option("--chunk0", type="string", default='', help="chunk0 for computing margin of error") parser.add_option("--chunk1", type="string", default='', help="chunk1 for computing margin of error") parser.add_option( "--PWadjustment", type="string", default='', help= "1-D power spectrum of PDB file used for EM volume power spectrum correction" ) parser.add_option( "--protein_shape", type="string", default='g', help= "protein shape. It defines protein preferred orientation angles. Currently it has g and f two types " ) parser.add_option( "--upscale", type="float", default=0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type="int", default=0, help="optimal window size for data processing") parser.add_option( "--interpolation", type="string", default="4nn", help="3-d reconstruction interpolation method, two options trl and 4nn" ) (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if len(args) > 2: mask_file = args[2] else: mask_file = None orgstack = args[0] masterdir = args[1] sp_global_def.BATCH = True #---initialize MPI related variables nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) mpi_comm = mpi.MPI_COMM_WORLD main_node = 0 # import some utilities from sp_utilities import get_im, bcast_number_to_all, cmdexecute, write_text_file, read_text_file, wrap_mpi_bcast, get_params_proj, write_text_row from sp_applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI from sp_statistics import k_means_match_clusters_asg_new, k_means_stab_bbenum from sp_applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI # Create the main log file from sp_logger import Logger, BaseLogger_Files if myid == main_node: log_main = Logger(BaseLogger_Files()) log_main.prefix = masterdir + "/" else: log_main = None #--- fill input parameters into dictionary named after Constants Constants = {} Constants["stack"] = args[0] Constants["masterdir"] = masterdir Constants["mask3D"] = mask_file Constants["focus3Dmask"] = options.focus Constants["indep_runs"] = options.independent Constants["stoprnct"] = options.stoprnct Constants[ "number_of_images_per_group"] = options.number_of_images_per_group Constants["CTF"] = options.CTF Constants["maxit"] = options.maxit Constants["ir"] = options.ir Constants["radius"] = options.radius Constants["nassign"] = options.nassign Constants["rs"] = options.rs Constants["xr"] = options.xr Constants["yr"] = options.yr Constants["ts"] = options.ts Constants["delta"] = options.delta Constants["an"] = options.an Constants["sym"] = options.sym Constants["center"] = options.center Constants["nrefine"] = options.nrefine #Constants["fourvar"] = options.fourvar Constants["user_func"] = options.function Constants[ "low_pass_filter"] = options.low_pass_filter # enforced low_pass_filter #Constants["debug"] = options.debug Constants["main_log_prefix"] = args[1] #Constants["importali3d"] = options.importali3d Constants["myid"] = myid Constants["main_node"] = main_node Constants["nproc"] = nproc Constants["log_main"] = log_main Constants["nxinit"] = options.nxinit Constants["unaccounted"] = options.unaccounted Constants["seed"] = options.seed Constants["smallest_group"] = options.smallest_group Constants["sausage"] = options.sausage Constants["chunk0"] = options.chunk0 Constants["chunk1"] = options.chunk1 Constants["PWadjustment"] = options.PWadjustment Constants["upscale"] = options.upscale Constants["wn"] = options.wn Constants["3d-interpolation"] = options.interpolation Constants["protein_shape"] = options.protein_shape # ----------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False #Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] #Tracker["upscale"] = 0.5 Tracker[ "applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 #Tracker["lowpass"] = 0.4 #Tracker["falloff"] = 0.2 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"] = False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] =0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from sp_utilities import sample_down_1D_curve, get_initial_ID, remove_small_groups, print_upper_triangular_matrix, print_a_line_with_timestamp from sp_utilities import print_dict, get_resolution_mrk01, partition_to_groups, partition_independent_runs, get_outliers from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack ####------------------------------------------------------------------ # # Get the pixel size; if none, set to 1.0, and the original image size from sp_utilities import get_shrink_data_huang if (myid == main_node): line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" sxprint((line + "Initialization of 3-D sorting")) a = get_im(orgstack) nnxo = a.get_xsize() if (Tracker["nxinit"] > nnxo): sp_global_def.ERROR( "Image size less than minimum permitted $d" % Tracker["nxinit"]) nnxo = -1 else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size / Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0 / nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node=main_node) if (nnxo < 0): return pixel_size = bcast_number_to_all(pixel_size, source_node=main_node) fq = bcast_number_to_all(fq, source_node=main_node) if Tracker["constants"]["wn"] == 0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo = Tracker["constants"]["nnxo"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if (Tracker["constants"]["radius"] < 1): Tracker["constants"][ "radius"] = Tracker["constants"]["nnxo"] // 2 - 2 elif ((2 * Tracker["constants"]["radius"] + 2) > Tracker["constants"]["nnxo"]): sp_global_def.ERROR("Particle radius set too large!", myid=myid) ####----------------------------------------------------------------------------------------- # Master directory if myid == main_node: if masterdir == "": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir = "master_sort3d" + timestring li = len(masterdir) cmd = "{} {}".format("mkdir -p", masterdir) os.system(cmd) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, main_node, mpi.MPI_COMM_WORLD)[0] if li > 0: masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, main_node, mpi.MPI_COMM_WORLD) import string masterdir = string.join(masterdir, "") if myid == main_node: print_dict(Tracker["constants"], "Permanent settings of 3-D sorting program") ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:" + masterdir + "/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["ctf_params"] = os.path.join( masterdir, "ctf_params.txt") Tracker["constants"]["partstack"] = Tracker["constants"][ "ali3d"] # also serves for refinement if myid == main_node: total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack = 0 total_stack = bcast_number_to_all(total_stack, source_node=main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from time import sleep while not os.path.exists(masterdir): sxprint("Node ", myid, " waiting...") sleep(5) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("Sphire sort3d ") log_main.add("the sort3d master directory is " + masterdir) ##### ###---------------------------------------------------------------------------------- # Initial data analysis and handle two chunk files from random import shuffle # Compute the resolution #### make chunkdir dictionary for computing margin of error import sp_user_functions user_func = sp_user_functions.factory[Tracker["constants"] ["user_func"]] chunk_dict = {} chunk_list = [] if myid == main_node: chunk_one = read_text_file(Tracker["constants"]["chunk0"]) chunk_two = read_text_file(Tracker["constants"]["chunk1"]) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ######################## Read/write bdb: data on main node ############################ if myid == main_node: if (orgstack[:4] == "bdb:"): cmd = "{} {} {}".format( "e2bdb.py", orgstack, "--makevstack=" + Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sp_cpy.py", orgstack, Tracker["constants"]["stack"]) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=xform.projection", "--export=" + Tracker["constants"]["ali3d"], orgstack) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=ctf", "--export=" + Tracker["constants"]["ctf_params"], orgstack) junk = cmdexecute(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ########----------------------------------------------------------------------------- Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float( Tracker["nxinit"]) / Tracker["constants"]["nnxo"] Tracker[ "radius"] = Tracker["constants"]["radius"] * Tracker["shrinkage"] if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir, "smask.hdf") else: Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"] = os.path.join(masterdir, "sfocus.hdf") else: Tracker["focus3D"] = None if myid == main_node: if Tracker["constants"]["mask3D"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"], Tracker["constants"]["mask3D"]) mask_3D.write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask( Tracker["nxinit"], Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if (st[0] == 0.0): ERROR( "Incorrect focused mask, after binarize all values zero" ) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"] != '': PW_dict = {} nxinit_pwsp = sample_down_1D_curve( Tracker["constants"]["nxinit"], Tracker["constants"]["nnxo"], Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir, "spwp.txt") if myid == main_node: write_text_file(nxinit_pwsp, Tracker["nxinit_PW"]) PW_dict[Tracker["constants"] ["nnxo"]] = Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict mpi.mpi_barrier(mpi.MPI_COMM_WORLD) #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------### for element in chunk_one: chunk_dict[element] = 0 for element in chunk_two: chunk_dict[element] = 1 chunk_list = [chunk_one, chunk_two] Tracker["chunk_dict"] = chunk_dict Tracker["P_chunk0"] = len(chunk_one) / float(total_stack) Tracker["P_chunk1"] = len(chunk_two) / float(total_stack) ### create two volumes to estimate resolution if myid == main_node: for index in range(2): write_text_file( chunk_list[index], os.path.join(masterdir, "chunk%01d.txt" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) vols = [] for index in range(2): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], os.path.join(masterdir, "chunk%01d.txt" % index), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) vol = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) if myid == main_node: vol.write_image(os.path.join(masterdir, "vol%d.hdf" % index)) vols.append(vol) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: low_pass, falloff, currentres = get_resolution_mrk01( vols, Tracker["constants"]["radius"], Tracker["constants"]["nxinit"], masterdir, Tracker["mask3D"]) if low_pass > Tracker["constants"]["low_pass_filter"]: low_pass = Tracker["constants"]["low_pass_filter"] else: low_pass = 0.0 falloff = 0.0 currentres = 0.0 bcast_number_to_all(currentres, source_node=main_node) bcast_number_to_all(low_pass, source_node=main_node) bcast_number_to_all(falloff, source_node=main_node) Tracker["currentres"] = currentres Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] == -1.0: Tracker["low_pass_filter"] = min( .45, low_pass / Tracker["shrinkage"]) # no better than .45 else: Tracker["low_pass_filter"] = min( .45, Tracker["constants"]["low_pass_filter"] / Tracker["shrinkage"]) Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] = .1 Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt") ############################################################################################ if myid == main_node: log_main.add("The command-line inputs are as following:") log_main.add( "**********************************************************") for a in sys.argv: if myid == main_node: log_main.add(a) if myid == main_node: log_main.add("number of cpus used in this run is %d" % Tracker["constants"]["nproc"]) log_main.add( "**********************************************************") from sp_filter import filt_tanl ### START 3-D sorting if myid == main_node: log_main.add("----------3-D sorting program------- ") log_main.add( "current resolution %6.3f for images of original size in terms of absolute frequency" % Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution" % (Tracker["constants"]["pixel_size"] / Tracker["currentres"] / Tracker["shrinkage"])) log_main.add("the user provided enforced low_pass_filter is %f" % Tracker["constants"]["low_pass_filter"]) #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"])) for index in range(2): filt_tanl( get_im(os.path.join(masterdir, "vol%01d.hdf" % index)), Tracker["low_pass_filter"], Tracker["falloff"]).write_image( os.path.join(masterdir, "volf%01d.hdf" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from sp_utilities import get_input_from_string delta = get_input_from_string(Tracker["constants"]["delta"]) delta = delta[0] from sp_utilities import even_angles n_angles = even_angles(delta, 0, 180) this_ali3d = Tracker["constants"]["ali3d"] sampled = get_stat_proj(Tracker, delta, this_ali3d) if myid == main_node: nc = 0 for a in sampled: if len(sampled[a]) > 0: nc += 1 log_main.add("total sampled direction %10d at angle step %6.3f" % (len(n_angles), delta)) log_main.add( "captured sampled directions %10d percentage covered by data %6.3f" % (nc, float(nc) / len(n_angles) * 100)) number_of_images_per_group = Tracker["constants"][ "number_of_images_per_group"] if myid == main_node: log_main.add("user provided number_of_images_per_group %d" % number_of_images_per_group) Tracker["number_of_images_per_group"] = number_of_images_per_group number_of_groups = get_number_of_groups(total_stack, number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups generation = 0 partition_dict = {} full_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("---- generation %5d" % generation) log_main.add("number of images per group is set as %d" % number_of_images_per_group) log_main.add("the initial number of groups is %10d " % number_of_groups) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) list_to_be_processed = list(range(Tracker["constants"]["total_stack"])) Tracker["this_data_list"] = list_to_be_processed create_random_list(Tracker) ################################# full_dict = {} for iptl in range(Tracker["constants"]["total_stack"]): full_dict[iptl] = iptl Tracker["full_ID_dict"] = full_dict ################################# for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = list_to_be_processed Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_particle_text_file"] = os.path.join( workdir, "independent_list_%03d.txt" % indep_run) # for get_shrink_data if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) ref_vol = apply_low_pass_filter(ref_vol, Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["partition_dict"] = partition_dict Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] from time import sleep number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid == main_node: log_main.add("group %d members %d " % (igrp, len(Tracker["this_data_list"]))) Tracker["number_of_ref_class"] = number_of_ref_class nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"][ "PWadjustment"] # no PW adjustment if myid == main_node: for iref in range(len(ref_vol_list)): refdata = [None] * 4 refdata[0] = ref_vol_list[iref] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir, "volf_stable.hdf"), iref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements( list_to_be_processed, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) update_full_dict(Tracker["this_unaccounted_list"], Tracker) ####################################### number_of_groups = len(res_groups) vol_list = [] number_of_ref_class = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) if (myid == main_node): npergroup = len( read_text_file(os.path.join(outdir, "Class%d.txt" % igrp))) else: npergroup = 0 npergroup = bcast_number_to_all(npergroup, main_node) number_of_ref_class.append(npergroup) Tracker["number_of_ref_class"] = number_of_ref_class mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) Tracker["this_data_list"] = Tracker[ "this_unaccounted_list"] # reset parameters for the next round calculation Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups while number_of_groups >= 2: generation += 1 partition_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("*********************************************") log_main.add("----- generation %5d " % generation) log_main.add("number of images per group is set as %10d " % number_of_images_per_group) log_main.add("the number of groups is %10d " % number_of_groups) log_main.add(" number of particles for clustering is %10d" % Tracker["total_stack"]) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) create_random_list(Tracker) for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] #ref_vol=apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_unaccounted_text"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] total_list_of_this_run = Tracker["this_unaccounted_list"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][ igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid == main_node: volref.write_image(os.path.join(workdir, "vol_stable.hdf"), iref) #volref = resample(volref,Tracker["shrinkage"]) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) # calculate the 3-D structure of original image size for each group number_of_groups = len(res_groups) Tracker["this_unaccounted_list"] = get_complementary_elements( total_list_of_this_run, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) update_full_dict(Tracker["this_unaccounted_list"], Tracker) vol_list = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) del vol_list mpi.mpi_barrier(mpi.MPI_COMM_WORLD) number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) if Tracker["constants"]["unaccounted"]: data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], Tracker["this_unaccounted_text"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if (myid == main_node): refdata = [None] * 4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) volref.write_image( os.path.join(workdir, "volf_unaccounted.hdf")) # Finish program if myid == main_node: log_main.add("sxsort3d finishes") mpi.mpi_barrier(mpi.MPI_COMM_WORLD) return
def main(): from time import sleep from sp_logger import Logger, BaseLogger_Files arglist = [] i = 0 while( i < len(sys.argv) ): if sys.argv[i]=='-p4pg': i = i+2 elif sys.argv[i]=='-p4wd': i = i+2 else: arglist.append( sys.argv[i] ) i = i+1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_filter=.25 --seed=random_seed" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--focus", type="string", default=None, help="3D mask for focused clustering ") parser.add_option("--ir", type= "int", default= 1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option("--radius", type= "int", default=-1, help="outer radius for rotational correlation <nx-1 (set to the radius of the particle)") parser.add_option("--maxit", type= "int", default=50, help="maximum number of iteration") parser.add_option("--rs", type= "int", default=1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option("--yr", type="string", default='-1', help="range for translation search in y direction, search is +/-yr (default = same as xr)") parser.add_option("--ts", type="string", default='0.25', help="step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr ") parser.add_option("--delta", type="string", default='2', help="angular step of reference projections") parser.add_option("--an", type="string", default='-1', help="angular neighborhood for local searches") parser.add_option("--center", type="int", default=0, help="0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)") parser.add_option("--nassign", type="int", default=1, help="number of reassignment iterations performed for each angular step (set to 3) ") parser.add_option("--nrefine", type="int", default=0, help="number of alignment iterations performed for each angular step (set to 1) ") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--stoprnct", type="float", default=3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type="string", default='c1', help="symmetry of the structure ") parser.add_option("--function", type="string", default='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type="int", default= 3, help="number of independent run") parser.add_option("--number_of_images_per_group", type='int', default=1000, help="number of images per groups") parser.add_option("--low_pass_filter", type="float", default=-1.0, help="absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type="int", default=64, help="initial image size for sorting" ) parser.add_option("--unaccounted", action="store_true", default=False, help="reconstruct the unaccounted images") parser.add_option("--seed", type="int", default=-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type="int", default=500, help="minimum members for identified group" ) parser.add_option("--previous_run1", type="string", default='', help="two previous runs" ) parser.add_option("--previous_run2", type="string", default='', help="two previous runs" ) parser.add_option("--group_size_for_unaccounted", type="int", default=500, help="size for unaccounted particles" ) parser.add_option("--chunkdir", type="string", default='', help="chunkdir for computing margin of error") parser.add_option("--sausage", action="store_true", default=False, help="way of filter volume") parser.add_option("--PWadjustment", type="string", default='', help="1-D power spectrum of PDB file used for EM volume power spectrum correction") parser.add_option("--protein_shape", type="string", default='g', help="protein shape. It defines protein preferred orientation angles. Currently it has g and f two types ") parser.add_option("--upscale", type="float", default=0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type="int", default=0, help="optimal window size for data processing") parser.add_option("--interpolation", type="string", default="4nn", help="3-d reconstruction interpolation method, two options, trl and 4nn") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if len(args)>2: mask_file = args[2] else: mask_file = None orgstack =args[0] masterdir =args[1] sp_global_def.BATCH = True #---initialize MPI related variables nproc = mpi.mpi_comm_size( mpi.MPI_COMM_WORLD ) myid = mpi.mpi_comm_rank( mpi.MPI_COMM_WORLD ) mpi_comm = mpi.MPI_COMM_WORLD main_node = 0 # Create the main log file from sp_logger import Logger,BaseLogger_Files if myid ==main_node: log_main=Logger(BaseLogger_Files()) log_main.prefix=masterdir+"/" else: log_main = None #--- fill input parameters into dictionary named after Constants Constants ={} Constants["stack"] =args[0] Constants["masterdir"] =masterdir Constants["mask3D"] =mask_file Constants["focus3Dmask"] =options.focus Constants["indep_runs"] =options.independent Constants["stoprnct"] =options.stoprnct Constants["number_of_images_per_group"] =options.number_of_images_per_group Constants["CTF"] =options.CTF Constants["maxit"] =options.maxit Constants["ir"] =options.ir Constants["radius"] =options.radius Constants["nassign"] =options.nassign Constants["rs"] =options.rs Constants["xr"] =options.xr Constants["yr"] =options.yr Constants["ts"] =options.ts Constants["delta"] =options.delta Constants["an"] =options.an Constants["sym"] =options.sym Constants["center"] =options.center Constants["nrefine"] =options.nrefine Constants["user_func"] =options.function Constants["low_pass_filter"] =options.low_pass_filter # enforced low_pass_filter Constants["main_log_prefix"] =args[1] #Constants["importali3d"] =options.importali3d Constants["myid"] =myid Constants["main_node"] =main_node Constants["nproc"] =nproc Constants["log_main"] =log_main Constants["nxinit"] =options.nxinit Constants["unaccounted"] =options.unaccounted Constants["seed"] =options.seed Constants["smallest_group"] =options.smallest_group Constants["previous_runs"] =options.previous_run1+" "+options.previous_run2 Constants["sausage"] =options.sausage Constants["chunkdir"] =options.chunkdir Constants["PWadjustment"] =options.PWadjustment Constants["upscale"] =options.upscale Constants["wn"] =options.wn Constants["3d-interpolation"] =options.interpolation Constants["protein_shape"] =options.protein_shape #Constants["frequency_stop_search"] =options.frequency_stop_search #Constants["scale_of_number"] =options.scale_of_number # ------------------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] Tracker["applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 Tracker["lowpass"] = Tracker["constants"]["low_pass_filter"] Tracker["falloff"] = 0.1 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"]= False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] = 0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from sp_utilities import sample_down_1D_curve,get_initial_ID,remove_small_groups,print_upper_triangular_matrix,print_a_line_with_timestamp from sp_utilities import convertasi,prepare_ptp,print_dict,get_resolution_mrk01,partition_to_groups,partition_independent_runs,get_outliers from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack ####------------------------------------------------------------------ # another part from sp_utilities import get_class_members, remove_small_groups, get_number_of_groups, get_stable_members_from_two_runs from sp_utilities import two_way_comparison_single, get_leftover_from_stable, get_initial_ID, Kmeans_exhaustive_run from sp_utilities import print_a_line_with_timestamp, split_a_group # # Get the pixel size; if none, set to 1.0, and the original image size from sp_utilities import get_shrink_data_huang from time import sleep import sp_user_functions user_func = sp_user_functions.factory[Tracker["constants"]["user_func"]] if(myid == main_node): line = '' sxprint((line+"Initialization of 3-D sorting")) a = get_im(Tracker["orgstack"]) nnxo = a.get_xsize() if( Tracker["nxinit"] > nnxo ): ERROR( "Image size less than minimum permitted $d"%Tracker["nxinit"] ) nnxo = -1 # we break here, so not sure what this is supposed to accomplish return else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size/Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0/nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node = main_node) if( nnxo < 0 ): return pixel_size = bcast_number_to_all(pixel_size, source_node = main_node) fq = bcast_number_to_all(fq, source_node = main_node) if Tracker["constants"]["wn"]==0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo= Tracker["constants"]["wn"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if(Tracker["constants"]["radius"] < 1): Tracker["constants"]["radius"] = Tracker["constants"]["nnxo"]//2-2 elif((2*Tracker["constants"]["radius"] +2) > Tracker["constants"]["nnxo"]): ERROR( "Particle radius set too large!", myid=myid ) return ####----------------------------------------------------------------------------------------- # create the master directory if myid == main_node: if masterdir =="": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir ="master_sort3d"+timestring li =len(masterdir) else: li = 0 cmd="{} {}".format("mkdir -p", masterdir) os.system(cmd) sp_global_def.write_command(masterdir) else: li=0 li = mpi.mpi_bcast( li, 1, mpi.MPI_INT, main_node, mpi.MPI_COMM_WORLD )[0] if li>0: masterdir = mpi.mpi_bcast( masterdir, li,MPI_CHAR, main_node, mpi.MPI_COMM_WORLD ) masterdir = string.join(masterdir,"") ####--- masterdir done! if myid == main_node: print_dict(Tracker["constants"],"Permanent settings of 3-D sorting program") from time import sleep while not os.path.exists(masterdir): # Be sure each proc is able to access the created dir sxprint("Node ",myid," waiting...") sleep(5) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:"+masterdir+"/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["partstack"] = Tracker["constants"]["ali3d"] Tracker["constants"]["ctf_params"] = os.path.join(masterdir, "ctf_params.txt") ###### if myid == main_node: if(Tracker["orgstack"][:4] == "bdb:"): cmd = "{} {} {}".format("e2bdb.py", Tracker["orgstack"],"--makevstack="+Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sp_cpy.py", orgstack, Tracker["constants"]["stack"]) cmdexecute(cmd) cmd = "{} {} {} {} ".format("sp_header.py", Tracker["constants"]["stack"],"--params=xform.projection","--export="+Tracker["constants"]["ali3d"]) cmdexecute(cmd) cmd = "{} {} {} {} ".format("sp_header.py", Tracker["constants"]["stack"],"--params=ctf","--export="+Tracker["constants"]["ctf_params"]) cmdexecute(cmd) #keepchecking = False total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack =0 total_stack = bcast_number_to_all(total_stack, source_node = main_node) """ if myid==main_node: from EMAN2db import db_open_dict OB = db_open_dict(orgstack) DB = db_open_dict(Tracker["constants"]["stack"]) for i in xrange(total_stack): DB[i] = OB[i] OB.close() DB.close() mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid==main_node: params= [] for i in xrange(total_stack): e=get_im(orgstack,i) phi,theta,psi,s2x,s2y = get_params_proj(e) params.append([phi,theta,psi,s2x,s2y]) write_text_row(params,Tracker["constants"]["ali3d"]) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) """ #Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float(Tracker["nxinit"])/Tracker["constants"]["nnxo"] #####------------------------------------------------------------------------------ if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir,"smask.hdf") else:Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"]=os.path.join(masterdir,"sfocus.hdf") else: Tracker["focus3D"] = None if myid ==main_node: if Tracker["constants"]["mask3D"]: get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["mask3D"]).write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if( st[0] == 0.0 ): ERROR( "sxrsort3d","incorrect focused mask, after binarize all values zero" ) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"]: PW_dict={} nxinit_pwsp=sample_down_1D_curve(Tracker["constants"]["nxinit"],Tracker["constants"]["nnxo"],Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir,"spwp.txt") if myid ==main_node: write_text_file(nxinit_pwsp,Tracker["nxinit_PW"]) PW_dict[Tracker["constants"]["nnxo"]] =Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] =Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict ###---------------------------------------------------------------------------------- ####--------------------------- Extract the previous results ##################################################### from random import shuffle if myid ==main_node: log_main.add(" Sphire rsort3d ") log_main.add("extract stable groups from two previous runs") stable_member_list = get_stable_members_from_two_runs(Tracker["constants"]["previous_runs"], Tracker["constants"]["total_stack"], log_main) Tracker["this_unaccounted_list"], new_stable_P1 = get_leftover_from_stable(stable_member_list, Tracker["constants"]["total_stack"], Tracker["constants"]["smallest_group"]) Tracker["this_unaccounted_list"].sort() Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) log_main.add("new stable is %d"%len(new_stable_P1)) else: Tracker["total_stack"] = 0 Tracker["this_unaccounted_list"] = 0 stable_member_list =0 stable_member_list = wrap_mpi_bcast(stable_member_list, main_node) Tracker["total_stack"] = bcast_number_to_all(Tracker["total_stack"], source_node = main_node) left_one_from_old_two_runs = wrap_mpi_bcast(Tracker["this_unaccounted_list"], main_node) if myid ==main_node: write_text_file(left_one_from_old_two_runs, os.path.join(masterdir,"unaccounted_from_two_previous_runs.txt")) sxprint(" Extracting results of two previous runs is done!") #################################### Estimate resolution----------------------############# #### make chunkdir dictionary for computing margin of error chunk_list = [] if Tracker["constants"]["chunkdir"] !="": ##inhere previous random assignment of odd and even if myid == main_node: chunk_one = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk0.txt")) chunk_two = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk1.txt")) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) else: ## if traces are lost, then creating new random assignment of odd, even particles chunks = list(range(Tracker["constants"]["total_stack"])) shuffle(chunks) chunk_one =chunks[0:Tracker["constants"]["total_stack"]//2] chunk_two =chunks[Tracker["constants"]["total_stack"]//2:Tracker["constants"]["total_stack"]] chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) ###### Fill chunk ID into headers when calling get_shrink_data_huang if myid ==main_node: sxprint(" random odd and even assignment done !") mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) #------------------------------------------------------------------------------ Tracker["chunk_dict"] = {} for element in chunk_one: Tracker["chunk_dict"][element] = 0 for element in chunk_two: Tracker["chunk_dict"][element] = 1 Tracker["P_chunk0"] = len(chunk_one)/float(Tracker["constants"]["total_stack"]) Tracker["P_chunk1"] = len(chunk_two)/float(Tracker["constants"]["total_stack"]) ### create two volumes to estimate resolution if myid == main_node: write_text_file(chunk_one, os.path.join(masterdir,"chunk0.txt")) write_text_file(chunk_two, os.path.join(masterdir,"chunk1.txt")) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) vols = [] for index in range(2): data1,old_shifts1 = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"], os.path.join(masterdir,"chunk%d.txt"%index), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True) vol1 = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data1, symmetry=Tracker["constants"]["sym"], finfo=None) if myid ==main_node: vol1_file_name = os.path.join(masterdir, "vol%d.hdf"%index) vol1.write_image(vol1_file_name) vols.append(vol1) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid ==main_node: low_pass, falloff, currentres = get_resolution_mrk01(vols, Tracker["constants"]["radius"]*Tracker["shrinkage"], Tracker["constants"]["nxinit"], masterdir,Tracker["mask3D"]) if low_pass > Tracker["constants"]["low_pass_filter"]: low_pass = Tracker["constants"]["low_pass_filter"] else: low_pass = 0.0 falloff = 0.0 currentres = 0.0 currentres = bcast_number_to_all(currentres,source_node = main_node) low_pass = bcast_number_to_all(low_pass,source_node = main_node) falloff = bcast_number_to_all(falloff,source_node = main_node) Tracker["currentres"] = currentres #################################################################### Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] == -1.0: Tracker["low_pass_filter"] = low_pass*Tracker["shrinkage"] else: Tracker["low_pass_filter"] = Tracker["constants"]["low_pass_filter"]/Tracker["shrinkage"] Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] = 0.1 Tracker["global_fsc"] = os.path.join(masterdir,"fsc.txt") ################################################################## if myid ==main_node: log_main.add("The command-line inputs are :") log_main.add("**********************************************************") for a in sys.argv: log_main.add(a) log_main.add("**********************************************************") from sp_filter import filt_tanl ##################### START 3-D sorting ########################## if myid ==main_node: log_main.add("----------3-D sorting program------- ") log_main.add("current resolution %6.3f for images of original size in terms of absolute frequency"%Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution"%(round((Tracker["constants"]["pixel_size"]/Tracker["currentres"]/Tracker["shrinkage"]),4))) filt_tanl(get_im(os.path.join(masterdir, "vol0.hdf")), Tracker["low_pass_filter"], 0.1).write_image(os.path.join(masterdir, "volf0.hdf")) filt_tanl(get_im(os.path.join(masterdir, "vol1.hdf")), Tracker["low_pass_filter"], 0.1).write_image(os.path.join(masterdir, "volf1.hdf")) sxprint(" random odd and even assignment done !") mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ## ---------------------------------------------------------------------------------------------######## ## Stop program and output results when the leftover from two sort3d runs is not sufficient for a new run ######## ## --------------------------------------------------- --------------------------------------- ###### Tracker["number_of_groups"] = get_number_of_groups(len(left_one_from_old_two_runs), Tracker["constants"]["number_of_images_per_group"]) if Tracker["number_of_groups"] <=1 : # programs finishes if myid == main_node: log_main.add("the unaccounted ones are no sufficient for a simple two-group run, output results!") log_main.add("this implies your two sort3d runs already achieved high reproducibale ratio. ") log_main.add("Or your number_of_images_per_group is too large ") log_main.add("the final reproducibility is %f"%((Tracker["constants"]["total_stack"]-len(Tracker["this_unaccounted_list"]))/float(Tracker["constants"]["total_stack"]))) for i in range(len(stable_member_list)): write_text_file(stable_member_list[i], os.path.join(masterdir,"P2_final_class%d.txt"%i)) mask3d = get_im(Tracker["constants"]["mask3D"]) else: mask3d = model_blank(Tracker["constants"]["nnxo"],Tracker["constants"]["nnxo"],Tracker["constants"]["nnxo"]) bcast_EMData_to_all(mask3d, myid, main_node) for igrp in range(len(stable_member_list)): #name_of_class_file = os.path.join(masterdir, "P2_final_class%d.txt"%igrp) data, old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(masterdir, "P2_final_class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc,preshift = True) if Tracker["constants"]["CTF"]: volref, fscc = rec3D_two_chunks_MPI(data, 1.0, Tracker["constants"]["sym"], mask3d,os.path.join(masterdir,"resolution_%02d.txt"%igrp), myid, main_node, index =-1, npad=2) else: sxprint("Missing CTF flag!") return mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) #nx_of_image=volref.get_xsize() if Tracker["constants"]["PWadjustment"] : Tracker["PWadjustment"] = Tracker["PW_dict"][Tracker["constants"]["nnxo"]] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid ==main_node: try: lowpass = search_lowpass(fscc) falloff = 0.1 except: lowpass = 0.4 falloff = 0.1 log_main.add(" lowpass and falloff from fsc are %f %f"%(lowpass, falloff)) lowpass = round(lowpass,4) falloff = round(min(0.1,falloff),4) Tracker["lowpass"] = lowpass Tracker["falloff"] = falloff refdata = [None]*4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) cutoff = Tracker["constants"]["pixel_size"]/lowpass log_main.add("%d vol low pass filer %f %f cut to %f Angstrom"%(igrp,Tracker["lowpass"],Tracker["falloff"],cutoff)) volref.write_image(os.path.join(masterdir,"volf_final%d.hdf"%igrp)) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) return else: # Continue clustering on unaccounted ones that produced by two_way comparison of two previous runs ######################################################################################################################### #if Tracker["constants"]["number_of_images_per_group"] ==-1: # Estimate number of images per group from delta, and scale up # or down by scale_of_number # number_of_images_per_group = int(Tracker["constants"]["scale_of_number"]*len(n_angles)) # #########################################################################################################################P2 if myid ==main_node: sxprint(" Now continue clustering on accounted ones because they can make at least two groups!") P2_partitions = [] number_of_P2_runs = 2 # Notice P2 start from two P1 runs ### input list_to_be_processed import copy mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) for iter_P2_run in range(number_of_P2_runs): # two runs such that one can obtain reproducibility list_to_be_processed = left_one_from_old_two_runs[:]#Tracker["this_unaccounted_list"][:] Tracker["this_unaccounted_list"] = left_one_from_old_two_runs[:] if myid == main_node : new_stable1 = new_stable_P1[:] total_stack = len(list_to_be_processed) # This is the input from two P1 runs #number_of_images_per_group = Tracker["constants"]["number_of_images_per_group"] P2_run_dir = os.path.join(masterdir, "P2_run%d"%iter_P2_run) Tracker["number_of_groups"] = get_number_of_groups(total_stack, Tracker["constants"]["number_of_images_per_group"]) if myid == main_node: cmd="{} {}".format("mkdir", P2_run_dir) os.system(cmd) log_main.add("----------------P2 independent run %d--------------"%iter_P2_run) log_main.add("user provided number_of_images_per_group %d"%Tracker["constants"]["number_of_images_per_group"]) sxprint("----------------P2 independent run %d--------------"%iter_P2_run) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) # #Tracker["number_of_groups"] = get_number_of_groups(total_stack,Tracker["constants"]["number_of_images_per_group"]) generation = 0 if myid == main_node: log_main.add("number of groups is %d"%Tracker["number_of_groups"]) log_main.add("total stack %d"%total_stack) while( Tracker["number_of_groups"]>=2 ): partition_dict = {} full_dict = {} workdir = os.path.join(P2_run_dir,"generation%03d"%generation) Tracker["this_dir"] = workdir if myid ==main_node: cmd="{} {}".format("mkdir", workdir) os.system(cmd) log_main.add("---- generation %5d"%generation) log_main.add("number of images per group is set as %d"%Tracker["constants"]["number_of_images_per_group"]) log_main.add("the initial number of groups is %d "%Tracker["number_of_groups"]) log_main.add(" the number to be processed in this generation is %d"%len(list_to_be_processed)) sxprint("---- generation %5d"%generation) #core=read_text_row(Tracker["constants"]["ali3d"],-1) #write_text_row(core, os.path.join(workdir,"node%d.txt"%myid)) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) Tracker["this_data_list"] = list_to_be_processed # leftover of P1 runs Tracker["total_stack"] = len(list_to_be_processed) create_random_list(Tracker) ###------ For super computer ############## update_full_dict(list_to_be_processed, Tracker) ###---- ##### ----------------Independent runs for EQ-Kmeans ------------------------------------ for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run] ref_vol = recons_mref(Tracker) if myid ==main_node: log_main.add("independent run %10d"%indep_run) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) #this_particle_text_file = # for get_shrink_data if myid ==main_node: write_text_file(list_to_be_processed, os.path.join(workdir, "independent_list_%03d.txt"%indep_run)) mref_ali3d_EQ_Kmeans(ref_vol, os.path.join(workdir, "EQ_Kmeans%03d"%indep_run), os.path.join(workdir, "independent_list_%03d.txt"%indep_run), Tracker) partition_dict[indep_run] = Tracker["this_partition"] del ref_vol Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] do_two_way_comparison(Tracker) ############################## if myid ==main_node: log_main.add("Now calculate stable volumes") if myid ==main_node: for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] write_text_file(Tracker["this_data_list"], os.path.join(workdir,"stable_class%d.txt"%igrp)) Tracker["this_data_list_file"] = -1 mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ### number_of_ref_class = [] ref_vol_list = [] for igrp in range(len(Tracker["two_way_stable_member"])): data, old_shifts = get_shrink_data_huang(Tracker,Tracker["nxinit"], os.path.join(workdir, "stable_class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid,prjlist=data,symmetry=Tracker["constants"]["sym"],finfo = None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid ==main_node: log_main.add("group %d members %d "%(igrp,len(Tracker["this_data_list"]))) #ref_vol_list=apply_low_pass_filter(ref_vol_list,Tracker) for iref in range(len(ref_vol_list)): ref_vol_list[iref].write_image(os.path.join(workdir,"vol_stable.hdf"),iref) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ################################ Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_groups,res_classes,final_list = ali3d_mref_Kmeans_MPI(ref_vol_list, outdir, os.path.join(workdir,"Accounted.txt"), Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements(list_to_be_processed,final_list) if myid == main_node: log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"])) update_full_dict(Tracker["this_unaccounted_list"], Tracker) if myid == main_node: write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) Tracker["number_of_groups"] = len(res_classes) ### Update data mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid == main_node: number_of_ref_class=[] log_main.add(" Compute volumes of original size") for igrp in range(Tracker["number_of_groups"]): if os.path.exists( os.path.join( outdir,"Class%d.txt"%igrp ) ): new_stable1.append( read_text_file( os.path.join( outdir, "Class%d.txt"%igrp ) ) ) log_main.add(" read Class file %d"%igrp) number_of_ref_class.append(len(new_stable1)) else: number_of_ref_class = 0 number_of_ref_class = wrap_mpi_bcast(number_of_ref_class,main_node) ################################ mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid ==main_node: vol_list = [] for igrp in range(Tracker["number_of_groups"]): if myid ==main_node: log_main.add("start vol %d"%igrp) data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"],myid, main_node, nproc, preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry = Tracker["constants"]["sym"],finfo= None) if myid == main_node: vol_list.append(volref) log_main.add(" vol %d is done"%igrp) Tracker["number_of_ref_class"] = number_of_ref_class mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) generation +=1 ################################# if myid ==main_node: for ivol in range(len(vol_list)): vol_list[ivol].write_image(os.path.join(workdir, "vol_of_Classes.hdf"),ivol) filt_tanl(vol_list[ivol],Tracker["constants"]["low_pass_filter"],.1).write_image(os.path.join(workdir, "volf_of_Classes.hdf"),ivol) log_main.add("number of unaccounted particles %10d"%len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d"%len(Tracker["this_accounted_list"])) del vol_list Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] #update_full_dict(complementary) #number_of_groups = int(float(len(Tracker["this_unaccounted_list"]))/number_of_images_per_group) del list_to_be_processed list_to_be_processed = copy.deepcopy(Tracker["this_unaccounted_list"]) Tracker["number_of_groups"] = get_number_of_groups(len(list_to_be_processed),Tracker["constants"]["number_of_images_per_group"]) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ############################################################################################################################# ### Reconstruct the unaccounted is only done once if (Tracker["constants"]["unaccounted"] and (len(Tracker["this_unaccounted_list"]) != 0)): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],Tracker["this_unaccounted_text"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo=None) volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid ==main_node: volref.write_image(os.path.join(workdir, "volf_unaccounted.hdf")) ######## Exhaustive Kmeans ############################################# if myid ==main_node: if len(Tracker["this_unaccounted_list"])>=Tracker["constants"]["smallest_group"]: new_stable1.append(Tracker["this_unaccounted_list"]) unaccounted = get_complementary_elements_total(Tracker["constants"]["total_stack"], final_list) Tracker["number_of_groups"] = len(new_stable1) log_main.add("----------------Exhaustive Kmeans------------------") log_main.add("number_of_groups is %d"%Tracker["number_of_groups"]) else: Tracker["number_of_groups"] = 0 ### prepare references for final K-means if myid == main_node: final_list =[] for alist in new_stable1: for element in alist:final_list.append(int(element)) unaccounted = get_complementary_elements_total(Tracker["constants"]["total_stack"],final_list) if len(unaccounted) > Tracker["constants"]["smallest_group"]: # treat unaccounted ones also as a group if it is not too small. new_stable1.append(unaccounted) Tracker["number_of_groups"] = len(new_stable1) for any in unaccounted:final_list.append(any) log_main.add("total number %d"%len(final_list)) else: final_list = 0 Tracker["number_of_groups"] = bcast_number_to_all(Tracker["number_of_groups"],source_node = main_node) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) final_list = wrap_mpi_bcast(final_list, main_node) workdir = os.path.join(P2_run_dir,"Exhaustive_Kmeans") # new workdir if myid==main_node: os.mkdir(workdir) write_text_file(final_list, os.path.join(workdir,"final_list.txt")) else: new_stable1 = 0 mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ## Create reference volumes if myid == main_node: number_of_ref_class = [] for igrp in range(Tracker["number_of_groups"]): class_file = os.path.join(workdir,"final_class%d.txt"%igrp) write_text_file(new_stable1[igrp],class_file) log_main.add(" group %d number of particles %d"%(igrp,len(new_stable1[igrp]))) number_of_ref_class.append(len(new_stable1[igrp])) else: number_of_ref_class= 0 number_of_ref_class = wrap_mpi_bcast(number_of_ref_class,main_node) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ref_vol_list = [] for igrp in range(Tracker["number_of_groups"]): if myid ==main_node : sxprint(" prepare reference %d"%igrp) #Tracker["this_data_list_file"] = os.path.join(workdir,"final_class%d.txt"%igrp) data,old_shifts = get_shrink_data_huang(Tracker, Tracker["nxinit"],os.path.join(workdir,"final_class%d.txt"%igrp), Tracker["constants"]["partstack"], myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo = None) #volref = filt_tanl(volref, Tracker["low_pass_filter"],.1) #if myid == main_node: # volref.write_image(os.path.join(masterdir,"volf_stable.hdf"),iref) #volref = resample(volref,Tracker["shrinkage"]) bcast_EMData_to_all(volref, myid, main_node) ref_vol_list.append(volref) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ### -------variables used in Kmeans_exhaustive_run----- Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = final_list Tracker["total_stack"] = len(final_list) Tracker["this_dir"] = workdir Tracker["this_data_list_file"] = os.path.join(workdir,"final_list.txt") KE_group = Kmeans_exhaustive_run(ref_vol_list,Tracker) # P2_partitions.append(KE_group[:][:]) if myid ==main_node: log_main.add(" the number of groups after exhaustive Kmeans is %d"%len(KE_group)) for ike in range(len(KE_group)):log_main.add(" group %d number of objects %d"%(ike,len(KE_group[ike]))) del new_stable1 mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid == main_node: log_main.add("P2 runs are done, now start two-way comparision to exclude those that are not reproduced ") reproduced_groups = two_way_comparison_single(P2_partitions[0],P2_partitions[1],Tracker)# Here partition IDs are original indexes. ###### ----------------Reconstruct reproduced groups------------------------####### ###### if myid == main_node: for index_of_reproduced_groups in range(len(reproduced_groups)): name_of_class_file = os.path.join(masterdir, "P2_final_class%d.txt"%index_of_reproduced_groups) write_text_file(reproduced_groups[index_of_reproduced_groups],name_of_class_file) log_main.add("-------start to reconstruct reproduced volumes individully to orignal size-----------") mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if Tracker["constants"]["mask3D"]: mask_3d = get_shrink_3dmask(Tracker["constants"]["nnxo"],Tracker["constants"]["mask3D"]) else: mask_3d = None for igrp in range(len(reproduced_groups)): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],os.path.join(masterdir, "P2_final_class%d.txt"%igrp),Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) #volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo=None) if Tracker["constants"]["CTF"]: volref, fscc = rec3D_two_chunks_MPI(data,1.0,Tracker["constants"]["sym"],mask_3d, \ os.path.join(masterdir,"resolution_%02d.txt"%igrp),myid,main_node,index =-1,npad =2,finfo=None) else: sxprint("Missing CTF flag!") return mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) fscc = read_text_file(os.path.join(masterdir, "resolution_%02d.txt"%igrp),-1) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] try: lowpass = search_lowpass(fscc) falloff = 0.1 except: lowpass= 0.4 falloff= 0.1 sxprint(lowpass) lowpass=round(lowpass,4) falloff=round(min(.1,falloff),4) Tracker["lowpass"]= lowpass Tracker["falloff"]= falloff if myid == main_node: refdata =[None]*4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) cutoff = Tracker["constants"]["pixel_size"]/lowpass log_main.add("%d vol low pass filer %f %f cut to %f Angstrom"%(igrp,Tracker["lowpass"],Tracker["falloff"],cutoff)) volref.write_image(os.path.join(masterdir,"volf_final%d.hdf"%igrp)) if myid==main_node: log_main.add(" sxsort3d_P2 finishes. ") # Finish program mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) return