def main(args): opts, args = getopt.getopt(args, "h") for opt, arg in opts: if opt == '-h': usage() return 0 msg = mboxutils.get_message(sys.stdin) try: del msg["X-Spambayes-Classification"] except KeyError: pass for pair in args: tag, db = pair.split('=', 1) h = hammie.open(db, True, 'r') score = h.score(msg) if score >= Options.options["Categorization", "spam_cutoff"]: msg["X-Spambayes-Classification"] = "%s; %.2f" % (tag, score) break else: msg["X-Spambayes-Classification"] = "unsure" sys.stdout.write(msg.as_string(unixfrom=(msg.get_unixfrom() is not None))) return 0
def untrain_from_header(self, msg): """Untrain bayes based on X-Spambayes-Trained header. msg can be a string, a file object, or a Message object. If no such header is present, nothing happens. If add_header is True, add a header with how it was trained (in case we need to untrain later) """ msg = mboxutils.get_message(msg) trained = msg.get(options["Headers", "trained_header_name"]) if not trained: return del msg[options["Headers", "trained_header_name"]] if trained == options["Headers", "header_ham_string"]: self.untrain_ham(msg) elif trained == options["Headers", "header_spam_string"]: self.untrain_spam(msg) else: raise ValueError('%s header value unrecognized' % options["Headers", "trained_header_name"])
def process_mailbox(self, mailbox): count, size = mailbox.stat() log = Logger() for i in range(1, count+1): if (i-1) % 10 == 0: print " == %d/%d ==" % (i, count) # Kevin's code used -1, but -1 doesn't work for one of # my POP accounts, while a million does. # Don't use retr because that may mark the message as # read (so says Kevin's code) message_tuple = mailbox.top(i, 1000000) text = "\n".join(message_tuple[1]) msg = mboxutils.get_message(text) mi = MessageInfo(mailbox, i, msg, text) _log_subject(mi, log) for filter in self: result = filter.process(mi, log) if result: log.accept(result) break else: # don't know what to do with this so just # keep it on the server log.pass_test("unknown") log.do_action(KEEP_IN_MAILBOX) log.accept("unknown") return log
def process_mailbox(self, mailbox): count, size = mailbox.stat() log = Logger() for i in range(1, count + 1): if (i - 1) % 10 == 0: print " == %d/%d ==" % (i, count) # Kevin's code used -1, but -1 doesn't work for one of # my POP accounts, while a million does. # Don't use retr because that may mark the message as # read (so says Kevin's code) message_tuple = mailbox.top(i, 1000000) text = "\n".join(message_tuple[1]) msg = mboxutils.get_message(text) mi = MessageInfo(mailbox, i, msg, text) _log_subject(mi, log) for filter in self: result = filter.process(mi, log) if result: log.accept(result) break else: # don't know what to do with this so just # keep it on the server log.pass_test("unknown") log.do_action(KEEP_IN_MAILBOX) log.accept("unknown") return log
def _calc_response(self, switches, body): switches = switches.split() actions = [] opts, args = getopt.getopt(switches, 'fgstGS') h = self.server.hammie for opt, arg in opts: if opt == '-f': actions.append(h.filter) elif opt == '-g': actions.append(h.train_ham) elif opt == '-s': actions.append(h.train_spam) elif opt == '-t': actions.append(h.filter_train) elif opt == '-G': actions.append(h.untrain_ham) elif opt == '-S': actions.append(h.untrain_spam) if actions == []: actions = [h.filter] from spambayes import mboxutils msg = mboxutils.get_message(body) for action in actions: action(msg) return mboxutils.as_string(msg, 1)
def main(args): opts, args = getopt.getopt(args, "h") for opt, arg in opts: if opt == '-h': help() return 0 tagdb_list = [] msg = mboxutils.get_message(sys.stdin) try: del msg["X-Spambayes-Classification"] except KeyError: pass for pair in args: tag, db = pair.split('=', 1) h = hammie.open(db, True, 'r') score = h.score(msg) if score >= Options.options["Categorization", "spam_cutoff"]: msg["X-Spambayes-Classification"] = "%s; %.2f" % (tag, score) break else: msg["X-Spambayes-Classification"] = "unsure" sys.stdout.write(msg.as_string(unixfrom=(msg.get_unixfrom() is not None))) return 0
def main(argv): opts, args = getopt.getopt(argv, "h", ["help"]) for opt, arg in opts: if opt in ("-h", "--help"): usage() return if options["pop3proxy", "cache_use_gzip"]: messageFactory = GzipFileMessageFactory() else: messageFactory = FileMessageFactory() sc = get_pathname_option("Storage", "spam_cache") hc = get_pathname_option("Storage", "ham_cache") spamCorpus = FileCorpus(messageFactory, sc) hamCorpus = FileCorpus(messageFactory, hc) allTrained = {} for corpus, disposition in [(spamCorpus, 'Yes'), (hamCorpus, 'No')]: for m in corpus: message = mboxutils.get_message(m.getSubstance()) message._pop3CacheDisposition = disposition allTrained[m.key()] = message keys = allTrained.keys() keys.sort() limit = 70 if len(keys) < limit: scale = 1 else: scale = len(keys) // (limit//2) count = successful = 0 successByCount = [] for key in keys: message = allTrained[key] disposition = message[options["Headers", "classification_header_name"]] if (message._pop3CacheDisposition == disposition): successful += 1 count += 1 if count % scale == (scale-1): successByCount.append(successful // scale) size = count // scale graph = [[" " for i in range(size+3)] for j in range(size)] for c in range(size): graph[c][1] = "|" graph[c][c+3] = "." graph[successByCount[c]][c+3] = "*" graph.reverse() print "\n Success of the classifier over time:\n" print " . - Number of messages over time" print " * - Number of correctly classified messages over time\n\n" for row in range(size): line = ''.join(graph[row]) if row == 0: print line + " %d" % count elif row == (count - successful) // scale: print line + " %d" % successful else: print line print " " + "_" * (size+2)
def process_mailbox(self, mailbox): count, size = mailbox.stat() log = Logger() for i in range(1, count+1): if (i-1) % 10 == 0: print " == %d/%d ==" % (i, count) message_tuple = mailbox.top(i, 1000000) text = "\n".join(message_tuple[1]) msg = mboxutils.get_message(text) mi = MessageInfo(mailbox, i, msg, text) _log_subject(mi, log) for filter in self: result = filter.process(mi, log) if result: log.accept(result) break else: log.pass_test("unknown") log.do_action(KEEP_IN_MAILBOX) log.accept("unknown") return log
def main(argv): opts, args = getopt.getopt(argv, "h", ["help"]) for opt, arg in opts: if opt in ("-h", "--help"): usage() return # Create the corpuses and the factory that reads the messages. if options["pop3proxy", "cache_use_gzip"]: messageFactory = GzipFileMessageFactory() else: messageFactory = FileMessageFactory() sc = get_pathname_option("Storage", "spam_cache") hc = get_pathname_option("Storage", "ham_cache") spamCorpus = FileCorpus(messageFactory, sc) hamCorpus = FileCorpus(messageFactory, hc) # Read in all the trained messages. allTrained = {} for corpus, disposition in [(spamCorpus, 'Yes'), (hamCorpus, 'No')]: for m in corpus: message = mboxutils.get_message(m.getSubstance()) message._pop3CacheDisposition = disposition allTrained[m.key()] = message # Sort the messages into the order they arrived, then work out a scaling # factor for the graph - 'limit' is the widest it can be in characters. keys = allTrained.keys() keys.sort() limit = 70 if len(keys) < limit: scale = 1 else: scale = len(keys) // (limit//2) # Build the data - an array of cumulative success indexed by count. count = successful = 0 successByCount = [] for key in keys: message = allTrained[key] disposition = message[options["Headers", "classification_header_name"]] if (message._pop3CacheDisposition == disposition): successful += 1 count += 1 if count % scale == (scale-1): successByCount.append(successful // scale) # Build the graph, as a list of rows of characters. size = count // scale graph = [[" " for i in range(size+3)] for j in range(size)] for c in range(size): graph[c][1] = "|" graph[c][c+3] = "." graph[successByCount[c]][c+3] = "*" graph.reverse() # Print the graph. print "\n Success of the classifier over time:\n" print " . - Number of messages over time" print " * - Number of correctly classified messages over time\n\n" for row in range(size): line = ''.join(graph[row]) if row == 0: print line + " %d" % count elif row == (count - successful) // scale: print line + " %d" % successful else: print line print " " + "_" * (size+2)
spamcount = 0 hamcount = 0 spamday = [0] * expire hamday = [0] * expire unsureday = [0] * expire date_re = re.compile( r";.* (\d{1,2} (?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) \d{2,4})" ) now = time.mktime(time.strptime(time.strftime("%d %b %Y"), "%d %b %Y")) if loud: print "Scanning everything" for f in os.listdir(everything): if f[0] in ('1', '2', '3', '4', '5', '6', '7', '8', '9'): name = os.path.join(everything, f) fh = file(name, "rb") msg = mboxutils.get_message(fh) fh.close() # Figure out how old the message is age = 2 * expire try: received = (msg.get_all("Received"))[0] received = date_re.search(received).group(1) # if loud: print " %s" % received date = time.mktime(time.strptime(received, "%d %b %Y")) # if loud: print " %d" % date age = (now - date) // day # Can't just continue here... we're in a try if age < 0: age = 2 * expire except: pass
def main(argv): opts, args = getopt.getopt(argv, "h", ["help"]) for opt, arg in opts: if opt in ("-h", "--help"): usage() return # Create the corpuses and the factory that reads the messages. if options["pop3proxy", "cache_use_gzip"]: messageFactory = GzipFileMessageFactory() else: messageFactory = FileMessageFactory() sc = get_pathname_option("Storage", "spam_cache") hc = get_pathname_option("Storage", "ham_cache") spamCorpus = FileCorpus(messageFactory, sc) hamCorpus = FileCorpus(messageFactory, hc) # Read in all the trained messages. allTrained = {} for corpus, disposition in [(spamCorpus, 'Yes'), (hamCorpus, 'No')]: for m in corpus: message = mboxutils.get_message(m.getSubstance()) message._pop3CacheDisposition = disposition allTrained[m.key()] = message # Sort the messages into the order they arrived, then work out a scaling # factor for the graph - 'limit' is the widest it can be in characters. keys = allTrained.keys() keys.sort() limit = 70 if len(keys) < limit: scale = 1 else: scale = len(keys) // (limit // 2) # Build the data - an array of cumulative success indexed by count. count = successful = 0 successByCount = [] for key in keys: message = allTrained[key] disposition = message[options["Headers", "classification_header_name"]] if (message._pop3CacheDisposition == disposition): successful += 1 count += 1 if count % scale == (scale - 1): successByCount.append(successful // scale) # Build the graph, as a list of rows of characters. size = count // scale graph = [[" " for i in range(size + 3)] for j in range(size)] for c in range(size): graph[c][1] = "|" graph[c][c + 3] = "." graph[successByCount[c]][c + 3] = "*" graph.reverse() # Print the graph. print "\n Success of the classifier over time:\n" print " . - Number of messages over time" print " * - Number of correctly classified messages over time\n\n" for row in range(size): line = ''.join(graph[row]) if row == 0: print line + " %d" % count elif row == (count - successful) // scale: print line + " %d" % successful else: print line print " " + "_" * (size + 2)
def get_message(self, obj): return get_message(obj)
def score_and_filter(self, msg, header=None, spam_cutoff=None, ham_cutoff=None, debugheader=None, debug=None, train=None): """Score (judge) a message and add a disposition header. msg can be a string, a file object, or a Message object. Optionally, set header to the name of the header to add, and/or spam_cutoff/ham_cutoff to the probability values which must be met or exceeded for a message to get a 'Spam' or 'Ham' classification. An extra debugging header can be added if 'debug' is set to True. The name of the debugging header is given as 'debugheader'. If 'train' is True, also train on the result of scoring the message (ie. train as ham if it's ham, train as spam if it's spam). If the message already has a trained header, it will be untrained first. You'll want to be very dilligent about retraining mistakes if you use this option. All defaults for optional parameters come from the Options file. Returns the score and same message with a new disposition header. """ if header == None: header = options["Headers", "classification_header_name"] if spam_cutoff == None: spam_cutoff = options["Categorization", "spam_cutoff"] if ham_cutoff == None: ham_cutoff = options["Categorization", "ham_cutoff"] if debugheader == None: debugheader = options["Headers", "evidence_header_name"] if debug == None: debug = options["Headers", "include_evidence"] if train == None: train = options["Hammie", "train_on_filter"] msg = mboxutils.get_message(msg) try: del msg[header] except KeyError: pass if train: self.untrain_from_header(msg) prob, clues = self._scoremsg(msg, True) if prob < ham_cutoff: is_spam = False disp = options["Headers", "header_ham_string"] elif prob > spam_cutoff: is_spam = True disp = options["Headers", "header_spam_string"] else: is_spam = False disp = options["Headers", "header_unsure_string"] if train: self.train(msg, is_spam, True) basic_disp = disp disp += "; %.*f" % (options["Headers", "header_score_digits"], prob) if options["Headers", "header_score_logarithm"]: if prob <= 0.005 and prob > 0.0: import math x = -math.log10(prob) disp += " (%d)" % x if prob >= 0.995 and prob < 1.0: x = -math.log10(1.0 - prob) disp += " (%d)" % x del msg[header] msg.add_header(header, disp) # Obey notate_to and notate_subject. for header in ('to', 'subject'): if basic_disp in options["Headers", "notate_" + header]: orig = msg[header] del msg[header] msg[header] = "%s,%s" % (basic_disp, orig) if debug: disp = self.formatclues(clues) del msg[debugheader] msg.add_header(debugheader, disp) result = mboxutils.as_string(msg, unixfrom=(msg.get_unixfrom() is not None)) return prob, result
skipcount = 0 spamcount = 0 hamcount = 0 spamday = [0] * expire hamday = [0] * expire unsureday = [0] * expire date_re = re.compile( r";.* (\d{1,2} (?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) \d{2,4})") now = time.mktime(time.strptime(time.strftime("%d %b %Y"), "%d %b %Y")) if loud: print "Scanning everything" for f in os.listdir(everything): if f[0] in ('1', '2', '3', '4', '5', '6', '7', '8', '9'): name = os.path.join(everything, f) fh = file(name, "rb") msg = mboxutils.get_message(fh) fh.close() # Figure out how old the message is age = 2 * expire try: received = (msg.get_all("Received"))[0] received = date_re.search(received).group(1) # if loud: print " %s" % received date = time.mktime(time.strptime(received, "%d %b %Y")) # if loud: print " %d" % date age = (now - date) // day # Can't just continue here... we're in a try if age < 0: age = 2 * expire except: pass
def score_and_filter(self, msg, header=None, spam_cutoff=None, ham_cutoff=None, debugheader=None, debug=None, train=None): """Score (judge) a message and add a disposition header. msg can be a string, a file object, or a Message object. Optionally, set header to the name of the header to add, and/or spam_cutoff/ham_cutoff to the probability values which must be met or exceeded for a message to get a 'Spam' or 'Ham' classification. An extra debugging header can be added if 'debug' is set to True. The name of the debugging header is given as 'debugheader'. If 'train' is True, also train on the result of scoring the message (ie. train as ham if it's ham, train as spam if it's spam). If the message already has a trained header, it will be untrained first. You'll want to be very dilligent about retraining mistakes if you use this option. All defaults for optional parameters come from the Options file. Returns the score and same message with a new disposition header. """ if header == None: header = options["Headers", "classification_header_name"] if spam_cutoff == None: spam_cutoff = options["Categorization", "spam_cutoff"] if ham_cutoff == None: ham_cutoff = options["Categorization", "ham_cutoff"] if debugheader == None: debugheader = options["Headers", "evidence_header_name"] if debug == None: debug = options["Headers", "include_evidence"] if train == None: train = options["Hammie", "train_on_filter"] msg = mboxutils.get_message(msg) try: del msg[header] except KeyError: pass if train: self.untrain_from_header(msg) prob, clues = self._scoremsg(msg, True) if prob < ham_cutoff: is_spam = False disp = options["Headers", "header_ham_string"] elif prob > spam_cutoff: is_spam = True disp = options["Headers", "header_spam_string"] else: is_spam = False disp = options["Headers", "header_unsure_string"] if train: self.train(msg, is_spam, True) basic_disp = disp disp += "; %.*f" % (options["Headers", "header_score_digits"], prob) if options["Headers", "header_score_logarithm"]: if prob<=0.005 and prob>0.0: import math x=-math.log10(prob) disp += " (%d)"%x if prob>=0.995 and prob<1.0: import math x=-math.log10(1.0-prob) disp += " (%d)"%x del msg[header] msg.add_header(header, disp) for header in ('to', 'subject'): if basic_disp in options["Headers", "notate_"+header]: orig = msg[header] del msg[header] msg[header] = "%s,%s" % (basic_disp, orig) if debug: disp = self.formatclues(clues) del msg[debugheader] msg.add_header(debugheader, disp) result = mboxutils.as_string(msg, unixfrom=(msg.get_unixfrom() is not None)) return prob, result