Пример #1
0
def ADMM_sparse_RPCA(D, max_it=10):
   """
   Alternating Direction Method of Multipliers for 
   Robust Principal Component Analysis (a.k.a. Principal Component Pursuit)
      min ||X||_* + lambda*||Y||_1 s.t. X + Y = D
   
   Sparse SVD: compute only the first 'sv' singular values, where sv is
   an estimate of the number of singular values that are greater than
   the value 1/rho, used in the shrinkage operation.

   A different approach with sparse SVD: Lin, Z., Chen, M., & Ma, Y. (2010). The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.
   """
   (M,N) = D.shape
   X = zeros((M,N))
   Y = zeros((M,N))
   Z = zeros((M,N))

   l = 1 / sqrt(max(M,N))
   print l
   rho = float(M)*N/(4*sparse.one_norm(D))
   print rho
   k = 0
   epsilon = 0.0000001 * linalg.norm(D)
   residual = epsilon * 100
   print epsilon
   sv = 20
   while k < max_it and residual >= epsilon:
      # Update X
      print "CSC it"
      TMP = scipy.sparse.csc_matrix(D-Y-Z)
      print "SVD it"
      U,sigma,Vh = scipy.sparse.linalg.svds(TMP, k = sv)
      #Ut,sigma,Vh = sparsesvd(TMP, k = sv)
      print sv, sum(sigma >= 1/rho)
      if sum(sigma >= 1/rho) < sv:
         sv += 1
      else:
         sv = int(min(sv + (k+1)*0.05*N,N))

      print "Get X"
      X = dot(dot(U, diag(sparse.shrinkage(sigma,1/rho))),Vh)

      # Update Y
      # Element-wise shrinkage
      print "Shrink it"
      Y = sparse.shrinkage(D - X - Z,  l/rho)
   
      # Update Z 
      Z = Z + X + Y - D
     
      print "Norm it"
      residual = linalg.norm(D-X-Y)

      #print k, 1/2*linalg.norm(dot(A,x_star)-s) + l*linalg.norm(x_star,1)
 
      k += 1
      
      print k, residual, sum(Y!=0) 
 
   return X, Y
Пример #2
0
def ADMM_RPCA(D, max_it=10):
   """
   Alternating Direction Method of Multipliers for 
   Robust Principal Component Analysis (a.k.a. Principal Component Pursuit)
      min ||X||_* + lambda*||Y||_1 s.t. X + Y = D

   Original source: Candes, E. J., Li, X., Ma, Y., & Wright, J. (2009). Robust principal component analysis?. arXiv preprint arXiv:0912.3599.
   An implementation: http://www.cds.caltech.edu/~ipapusha/code/pcp_admm.m
   """
   (M,N) = D.shape
   
   l = 1 / sqrt(max(M,N))
   print "Lambda", l
   rho = 10*float(M)*N/(4*sparse.one_norm(D))
   print "Rho:", rho
   k = 0

   X,Y,Z = zeros((M,N)), zeros((M,N)), zeros((M,N))
   
   epsilon = 0.0000001 * linalg.norm(D)
   residual = epsilon * 100
   print "Primal tolerance", epsilon
   print "Max iterations", max_it 

   while k < max_it and residual >= epsilon:
      # Update X
      print "SVD it"
      U,sigma,Vh = linalg.svd(D - Y - Z, full_matrices=False)
      print "Get X"
      X = dot(dot(U, diag(sparse.shrinkage(sigma,1/rho))),Vh)
     
      # Update Y
      # Element-wise shrinkage
      print "Shrink it"
      newY = sparse.shrinkage(D - X - Z,  l/rho)
   
      # Update Z 
      Z = Z + X + newY - D
     
      print "Norm it"
      residual = linalg.norm(D - X - Y)
      dual_residual = rho*linalg.norm(newY - Y)
      Y = newY
      #print k, 1/2*linalg.norm(dot(A,x_star)-s) + l*linalg.norm(x_star,1)
      #TODO vary rho
      #TODO dual_tolerance
      
      k += 1
      
      print k, residual, dual_residual, sum(Y!=0) 
 
   return X, Y