Пример #1
0
def test_cross_val_criterion():
    alpha_min = alpha_max / 10
    log_alpha_max = np.log(alpha_max)
    log_alpha_min = np.log(alpha_min)
    max_iter = 10000
    n_alphas = 10
    kf = KFold(n_splits=5, shuffle=True, random_state=56)

    estimator = sklearn.linear_model.Lasso(fit_intercept=False,
                                           max_iter=1000,
                                           warm_start=True)
    monitor_grid = Monitor()
    criterion = CrossVal(X, y, Lasso, cv=kf, estimator=estimator)
    algo = Forward()
    grid_search(algo,
                criterion,
                log_alpha_min,
                log_alpha_max,
                monitor_grid,
                max_evals=n_alphas,
                tol=tol)

    reg = LassoCV(cv=kf,
                  verbose=True,
                  tol=tol,
                  fit_intercept=False,
                  alphas=np.geomspace(alpha_max, alpha_min, num=n_alphas),
                  max_iter=max_iter).fit(X, y)
    reg.score(X, y)
    objs_grid_sk = reg.mse_path_.mean(axis=1)
    # these 2 value should be the same
    (objs_grid_sk - np.array(monitor_grid.objs))
    assert np.allclose(objs_grid_sk, monitor_grid.objs)
Пример #2
0
def test_cross_val_criterion(model_name, XX):
    model = models[model_name]
    alpha_min = alpha_max / 10
    max_iter = 10000
    n_alphas = 10
    kf = KFold(n_splits=5, shuffle=True, random_state=56)

    monitor_grid = Monitor()
    if model_name.startswith("lasso"):
        sub_crit = HeldOutMSE(None, None)
    else:
        sub_crit = HeldOutLogistic(None, None)
    criterion = CrossVal(sub_crit, cv=kf)
    grid_search(criterion,
                model,
                XX,
                y,
                alpha_min,
                alpha_max,
                monitor_grid,
                max_evals=n_alphas,
                tol=tol)

    if model_name.startswith("lasso"):
        reg = linear_model.LassoCV(cv=kf,
                                   verbose=True,
                                   tol=tol,
                                   fit_intercept=False,
                                   alphas=np.geomspace(alpha_max,
                                                       alpha_min,
                                                       num=n_alphas),
                                   max_iter=max_iter).fit(X, y)
    else:
        reg = linear_model.LogisticRegressionCV(
            cv=kf,
            verbose=True,
            tol=tol,
            fit_intercept=False,
            Cs=len(idx_train) /
            np.geomspace(alpha_max, alpha_min, num=n_alphas),
            max_iter=max_iter,
            penalty='l1',
            solver='liblinear').fit(X, y)
    reg.score(XX, y)
    if model_name.startswith("lasso"):
        objs_grid_sk = reg.mse_path_.mean(axis=1)
    else:
        objs_grid_sk = reg.scores_[1.0].mean(axis=1)
    # these 2 value should be the same
    (objs_grid_sk - np.array(monitor_grid.objs))
    np.testing.assert_allclose(objs_grid_sk, monitor_grid.objs)
Пример #3
0
def parallel_function(dataset_name,
                      method,
                      tol=1e-5,
                      n_outer=50,
                      tolerance_decrease='constant'):

    # load data
    X, y = fetch_libsvm(dataset_name)
    y -= np.mean(y)
    # compute alpha_max
    alpha_max = np.abs(X.T @ y).max() / len(y)

    if model_name == "logreg":
        alpha_max /= 2
    alpha_min = alpha_max * dict_palphamin[dataset_name]

    if model_name == "enet":
        estimator = linear_model.ElasticNet(fit_intercept=False,
                                            max_iter=10_000,
                                            warm_start=True,
                                            tol=tol)
        model = ElasticNet(estimator=estimator)
    elif model_name == "logreg":
        model = SparseLogreg(estimator=estimator)

    # TODO improve this
    try:
        n_outer = dict_n_outers[dataset_name, method]
    except Exception:
        n_outer = 20

    size_loop = 2
    for _ in range(size_loop):
        if model_name == "lasso" or model_name == "enet":
            sub_criterion = HeldOutMSE(None, None)
        elif model_name == "logreg":
            criterion = HeldOutLogistic(None, None)
        kf = KFold(n_splits=5, shuffle=True, random_state=42)
        criterion = CrossVal(sub_criterion, cv=kf)

        algo = ImplicitForward(tol_jac=1e-3)
        monitor = Monitor()
        t_max = dict_t_max[dataset_name]
        if method == 'grid_search':
            num1D = dict_point_grid_search[dataset_name]
            alpha1D = np.geomspace(alpha_max, alpha_min, num=num1D)
            alphas = [np.array(i) for i in product(alpha1D, alpha1D)]
            grid_search(algo,
                        criterion,
                        model,
                        X,
                        y,
                        alpha_min,
                        alpha_max,
                        monitor,
                        max_evals=100,
                        tol=tol,
                        alphas=alphas)
        elif method == 'random' or method == 'bayesian':
            hyperopt_wrapper(algo,
                             criterion,
                             model,
                             X,
                             y,
                             alpha_min,
                             alpha_max,
                             monitor,
                             max_evals=30,
                             tol=tol,
                             method=method,
                             size_space=2,
                             t_max=t_max)
        elif method.startswith("implicit_forward"):
            # do gradient descent to find the optimal lambda
            alpha0 = np.array([alpha_max / 100, alpha_max / 100])
            n_outer = 30
            if method == 'implicit_forward':
                optimizer = GradientDescent(n_outer=n_outer,
                                            p_grad_norm=1,
                                            verbose=True,
                                            tol=tol,
                                            t_max=t_max)
            else:
                optimizer = GradientDescent(n_outer=n_outer,
                                            p_grad_norm=1,
                                            verbose=True,
                                            tol=tol,
                                            t_max=t_max,
                                            tol_decrease="geom")
            grad_search(algo, criterion, model, optimizer, X, y, alpha0,
                        monitor)
        else:
            raise NotImplementedError

    monitor.times = np.array(monitor.times)
    monitor.objs = np.array(monitor.objs)
    monitor.objs_test = 0  # TODO
    monitor.alphas = np.array(monitor.alphas)
    return (dataset_name, method, tol, n_outer, tolerance_decrease,
            monitor.times, monitor.objs, monitor.objs_test, monitor.alphas,
            alpha_max, model_name)
Пример #4
0
def parallel_function(dataset_name,
                      div_alpha,
                      method,
                      ind_rep,
                      random_state=10):
    maxit = dict_maxits[(dataset_name, div_alpha)][ind_rep]
    print("Dataset %s, algo %s, maxit %i" % (dataset_name, method, maxit))
    X, y = fetch_libsvm(dataset_name)
    n_samples = len(y)

    kf = KFold(n_splits=5, random_state=random_state, shuffle=True)

    for i in range(2):
        alpha_max = np.max(np.abs(X.T.dot(y))) / n_samples
        log_alpha = np.log(alpha_max / div_alpha)
        monitor = Monitor()
        if method == "celer":
            clf = Lasso_celer(
                alpha=np.exp(log_alpha),
                fit_intercept=False,
                # TODO maybe change this tol
                tol=1e-8,
                max_iter=maxit)
            model = Lasso(estimator=clf, max_iter=maxit)
            criterion = HeldOutMSE(None, None)
            cross_val = CrossVal(cv=kf, criterion=criterion)
            algo = ImplicitForward(tol_jac=1e-8,
                                   n_iter_jac=maxit,
                                   use_stop_crit=False)
            algo.max_iter = maxit
            val, grad = cross_val.get_val_grad(model,
                                               X,
                                               y,
                                               log_alpha,
                                               algo.get_beta_jac_v,
                                               tol=tol,
                                               monitor=monitor,
                                               max_iter=maxit)
        elif method == "ground_truth":
            for file in os.listdir("results/"):
                if file.startswith("hypergradient_%s_%i_%s" %
                                   (dataset_name, div_alpha, method)):
                    return
                else:
                    clf = Lasso_celer(alpha=np.exp(log_alpha),
                                      fit_intercept=False,
                                      warm_start=True,
                                      tol=1e-13,
                                      max_iter=10000)
                    criterion = HeldOutMSE(None, None)
                    cross_val = CrossVal(cv=kf, criterion=criterion)
                    algo = Implicit(criterion)
                    model = Lasso(estimator=clf, max_iter=10000)
                    val, grad = cross_val.get_val_grad(model,
                                                       X,
                                                       y,
                                                       log_alpha,
                                                       algo.get_beta_jac_v,
                                                       tol=1e-13,
                                                       monitor=monitor)
        else:
            model = Lasso(max_iter=maxit)
            criterion = HeldOutMSE(None, None)
            cross_val = CrossVal(cv=kf, criterion=criterion)
            if method == "forward":
                algo = Forward(use_stop_crit=False)
            elif method == "implicit_forward":
                algo = ImplicitForward(use_stop_crit=False,
                                       tol_jac=1e-8,
                                       n_iter_jac=maxit,
                                       max_iter=1000)
            elif method == "implicit":
                algo = Implicit(use_stop_crit=False, max_iter=1000)
            elif method == "backward":
                algo = Backward()
            else:
                1 / 0
            algo.max_iter = maxit
            algo.use_stop_crit = False
            val, grad = cross_val.get_val_grad(model,
                                               X,
                                               y,
                                               log_alpha,
                                               algo.get_beta_jac_v,
                                               tol=tol,
                                               monitor=monitor,
                                               max_iter=maxit)

    results = (dataset_name, div_alpha, method, maxit, val, grad,
               monitor.times[0])
    df = pandas.DataFrame(results).transpose()
    df.columns = [
        'dataset', 'div_alpha', 'method', 'maxit', 'val', 'grad', 'time'
    ]
    str_results = "results/hypergradient_%s_%i_%s_%i.pkl" % (
        dataset_name, div_alpha, method, maxit)
    df.to_pickle(str_results)
Пример #5
0
                                    tol=tol)

dict_monitor = {}

all_algo_name = ['grid_search']
# , 'implicit_forward', "implicit_forward_approx", 'bayesian']
# , 'random_search']
# all_algo_name = ['random_search']

for algo_name in all_algo_name:
    model = ElasticNet(estimator=estimator)
    sub_criterion = HeldOutMSE(None, None)
    alpha0 = np.array([alpha_max / 10, alpha_max / 10])
    monitor = Monitor()
    kf = KFold(n_splits=5, shuffle=True, random_state=42)
    criterion = CrossVal(sub_criterion, cv=kf)
    algo = ImplicitForward(tol_jac=1e-3)
    # optimizer = LineSearch(n_outer=10, tol=tol)
    if algo_name.startswith('implicit_forward'):
        if algo_name == "implicit_forward_approx":
            optimizer = GradientDescent(n_outer=30,
                                        p_grad_norm=1.,
                                        verbose=True,
                                        tol=tol,
                                        tol_decrease="geom")
        else:
            optimizer = GradientDescent(n_outer=30,
                                        p_grad_norm=1.,
                                        verbose=True,
                                        tol=tol)
        grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor)
Пример #6
0
# Now do the hyperparameter optimization with implicit differentiation
# --------------------------------------------------------------------

estimator = sklearn.linear_model.Lasso(fit_intercept=False,
                                       max_iter=1000,
                                       warm_start=True,
                                       tol=tol)

print('sparse-ho started')

t0 = time.time()
model = Lasso()
criterion = HeldOutMSE(None, None)
alpha0 = alpha_max / 10
monitor_grad = Monitor()
cross_val_criterion = CrossVal(criterion, cv=kf)
algo = ImplicitForward()
optimizer = LineSearch(n_outer=10, tol=tol)
grad_search(algo, cross_val_criterion, model, optimizer, X, y, alpha0,
            monitor_grad)

t_grad_search = time.time() - t0

print('sparse-ho finished')

##############################################################################
# Plot results
# ------------
objs = reg.mse_path_.mean(axis=1)

p_alphas_grad = np.array(monitor_grad.alphas) / alpha_max
Пример #7
0
# Now do the hyperparameter optimization with implicit differentiation
# --------------------------------------------------------------------

estimator = sklearn.linear_model.Lasso(fit_intercept=False,
                                       max_iter=1000,
                                       warm_start=True,
                                       tol=tol)

print('sparse-ho started')

t0 = time.time()
Model = Lasso
Criterion = HeldOutMSE
log_alpha0 = np.log(alpha_max / 10)
monitor_grad = Monitor()
criterion = CrossVal(X, y, Model, cv=kf, estimator=estimator)
algo = ImplicitForward()
grad_search(algo,
            criterion,
            np.log(alpha_max / 10),
            monitor_grad,
            n_outer=10,
            tol=tol)

t_grad_search = time.time() - t0

print('sparse-ho finished')

##############################################################################
# Plot results
# ------------