Пример #1
0
    def __init__(self, *, inplanes, outplanes, nplanes=1, params):
        nn.Module.__init__(self)

        self.conv1 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=inplanes,
                                                nOut=outplanes,
                                                filter_size=[nplanes, 3, 3],
                                                bias=params.use_bias)

        self.do_batch_norm = False
        if params.batch_norm:
            self.do_batch_norm = True
            self.bn1 = scn.BatchNormReLU(outplanes)

        self.conv2 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=outplanes,
                                                nOut=outplanes,
                                                filter_size=[nplanes, 3, 3],
                                                bias=False)

        if params.batch_norm:
            self.bn2 = scn.BatchNormalization(outplanes)

        self.residual = scn.Identity()
        self.relu = scn.ReLU()

        self.add = scn.AddTable()
Пример #2
0
def residual_block(m, a, b, leakiness=0.01, dimensions=2):
    """
    append to a sequence module:
    produce output of [identity,3x3+3x3] then add together

    inputs
    ------
    m [scn.Sequential module] network to add layers to
    a [int]: number of input channels
    b [int]: number of output channels
    leakiness [float]: leakiness of ReLU activations
    dimensions [int]: dimensions of input sparse tensor

    modifies
    --------
    m: adds layers
    """
    m.add(scn.ConcatTable().add(scn.Identity(
    ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
        scn.Sequential().add(scn.BatchNormLeakyReLU(
            a, leakiness=leakiness)).add(
                scn.SubmanifoldConvolution(dimensions, a, b, 3, False)).add(
                    scn.BatchNormLeakyReLU(b, leakiness=leakiness)).add(
                        scn.SubmanifoldConvolution(
                            dimensions, b, b, 3, False)))).add(scn.AddTable())
Пример #3
0
 def __init__(self, nf_in, nf, input_sparsetensor, return_sparsetensor,
              max_data_size):
     nn.Module.__init__(self)
     data_dim = 3
     self.nf_in = nf_in
     self.nf = nf
     self.input_sparsetensor = input_sparsetensor
     self.return_sparsetensor = return_sparsetensor
     self.max_data_size = max_data_size
     if not self.input_sparsetensor:
         self.p0 = scn.InputLayer(data_dim, self.max_data_size, mode=0)
     self.p1 = scn.SubmanifoldConvolution(data_dim,
                                          nf_in,
                                          nf,
                                          filter_size=FSIZE0,
                                          bias=False)
     self.p2 = scn.Sequential()
     self.p2.add(scn.ConcatTable().add(scn.Identity()).add(
         scn.Sequential().add(scn.BatchNormReLU(nf)).add(
             scn.SubmanifoldConvolution(
                 data_dim, nf, nf, FSIZE0,
                 False)).add(scn.BatchNormReLU(nf)).add(
                     scn.SubmanifoldConvolution(data_dim, nf, nf, FSIZE0,
                                                False)))).add(
                                                    scn.AddTable())
     self.p2.add(scn.BatchNormReLU(nf))
     # downsample space by factor of 2
     self.p3 = scn.Sequential().add(
         scn.Convolution(data_dim, nf, nf, FSIZE1, 2, False))
     self.p3.add(scn.BatchNormReLU(nf))
     if not self.return_sparsetensor:
         self.p4 = scn.SparseToDense(data_dim, nf)
Пример #4
0
    def block(self,
              m,
              a,
              b,
              dimension=3,
              residual_blocks=False,
              leakiness=0,
              kernel_size=3,
              use_batch_norm=True):  # default using residual_block
        if use_batch_norm:
            Activation = lambda channels: scn.BatchNormLeakyReLU(
                channels, leakiness=leakiness)
        else:
            Activation = lambda channels: scn.LeakyReLU(leakiness)

        if residual_blocks:  #ResNet style blocks
            m.add(scn.ConcatTable().add(scn.Identity(
            ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
                scn.Sequential().add(Activation(a)).add(
                    scn.SubmanifoldConvolution(dimension, a, b, kernel_size,
                                               False)).add(Activation(b)).add(
                                                   scn.SubmanifoldConvolution(
                                                       dimension, b, b,
                                                       kernel_size,
                                                       False)))).add(
                                                           scn.AddTable())
        else:  #VGG style blocks
            m.add(scn.Sequential().add(Activation(a)).add(
                scn.SubmanifoldConvolution(dimension, a, b, kernel_size,
                                           False)))
Пример #5
0
    def __init__(self, inplanes, outplanes, nplanes=1):
        nn.Module.__init__(self)
        
        
        self.conv1 = scn.SubmanifoldConvolution(dimension=3, 
            nIn         = inplanes, 
            nOut        = outplanes, 
            filter_size = [nplanes,3,3], 
            bias=False)
        

        # if FLAGS.BATCH_NORM:
        self.bn1 = scn.BatchNormReLU(outplanes)

        self.conv2 = scn.SubmanifoldConvolution(dimension=3, 
            nIn         = outplanes,
            nOut        = outplanes,
            filter_size = [nplanes,3,3],
            bias        = False)

        # if FLAGS.BATCH_NORM:
        self.bn2 = scn.BatchNormalization(outplanes)

        self.residual = scn.Identity()
        self.relu = scn.ReLU()

        self.add = scn.AddTable()
Пример #6
0
    def __init__(self, inplanes, outplanes, bias, batch_norm):
        nn.Module.__init__(self)

        self.conv1 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=inplanes,
                                                nOut=outplanes,
                                                filter_size=3,
                                                bias=bias)

        if batch_norm:
            self.activation1 = scn.BatchNormReLU(outplanes, momentum=0.5)
        else:
            self.activation1 = scn.ReLU()

        self.conv2 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=outplanes,
                                                nOut=outplanes,
                                                filter_size=3,
                                                bias=bias)

        if batch_norm:
            self.activation2 = scn.BatchNormReLU(outplanes, momentum=0.5)
        else:
            self.activation2 = scn.ReLU()

        self.residual = scn.Identity()

        self.add = scn.AddTable()
Пример #7
0
 def block(m, a, b):
     if residual_blocks:  #ResNet style blocks
         m.add(scn.ConcatTable().add(scn.Identity(
         ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
             scn.Sequential().add(
                 scn.BatchNormLeakyReLU(
                     a,
                     momentum=bn_momentum,
                     leakiness=leakiness,
                     track_running_stats=track_running_stats)
             ).add(scn.SubmanifoldConvolution(
                 dimension, a, b, 3, False)).add(
                     scn.BatchNormLeakyReLU(
                         b,
                         momentum=bn_momentum,
                         leakiness=leakiness,
                         track_running_stats=track_running_stats)).add(
                             scn.SubmanifoldConvolution(
                                 dimension, b, b, 3,
                                 False)))).add(scn.AddTable())
     else:  #VGG style blocks
         m.add(scn.Sequential().add(
             scn.BatchNormLeakyReLU(
                 a,
                 momentum=bn_momentum,
                 leakiness=leakiness,
                 track_running_stats=track_running_stats)).add(
                     scn.SubmanifoldConvolution(dimension, a, b, 3,
                                                False)))
     operation = {'kernel': [1, 1, 1], 'stride': [1, 1, 1]}
     return operation
Пример #8
0
def residual_block(m, ninputchs, noutputchs, leakiness=0.01, dimensions=2):
    """
    Residual Modulae Block

    intention is to append to a sequence module (m)
    produce output of [identity,3x3+3x3] then add together

    inputs
    ------
    m [scn.Sequential module] network to add layers to
    ninputchs   [int]: number of input channels
    noutputchs  [int]: number of output channels
    leakiness [float]: leakiness of ReLU activations
    dimensions  [int]: dimensions of input sparse tensor

    modifies
    --------
    m: adds layers
    """
    inoutsame = ninputchs == noutputchs
    m.add(scn.ConcatTable().add(
        scn.Identity() if inoutsame else scn.
        NetworkInNetwork(ninputchs, noutputchs, False)).add(
            scn.Sequential().add(
                scn.BatchNormLeakyReLU(ninputchs, leakiness=leakiness)).add(
                    scn.SubmanifoldConvolution(
                        dimensions, ninputchs, noutputchs, 3, False)).add(
                            scn.BatchNormLeakyReLU(
                                noutputchs, leakiness=leakiness)).add(
                                    scn.SubmanifoldConvolution(
                                        dimensions, noutputchs, noutputchs, 3,
                                        False)))).add(scn.AddTable())
Пример #9
0
def sparse_residual(inner_block, residual_changer, activation):
    layer = scn.Sequential(
        scn.ConcatTable(residual_changer, inner_block),
        scn.AddTable())
    if activation is not None:
        layer.append(activation)
    return layer
Пример #10
0
 def block(self, nPlanes, n, reps, stride):
     m = scn.Sequential()
     for rep in range(reps):
         if rep == 0:
             m.add(scn.BatchNormReLU(nPlanes))
             m.add(scn.ConcatTable().add(self.residual(
                 nPlanes, n, stride)).add(scn.Sequential().add(
                     scn.SubmanifoldConvolution(self.dimension, nPlanes, n,
                                                3, False) if stride ==
                     1 else scn.Convolution(
                         self.dimension, nPlanes, n, 2, stride, False)).add(
                             scn.BatchNormReLU(n)).add(
                                 scn.SubmanifoldConvolution(
                                     self.dimension, n, n, 3, False))))
         else:
             m.add(scn.ConcatTable().add(scn.Sequential().add(
                 scn.BatchNormReLU(nPlanes)).add(
                     scn.SubmanifoldConvolution(
                         self.dimension, nPlanes, n, 3,
                         False)).add(scn.BatchNormReLU(n)).add(
                             scn.SubmanifoldConvolution(
                                 self.dimension, n, n, 3,
                                 False))).add(scn.Identity()))
         m.add(scn.AddTable())
         nPlanes = n
     return m
Пример #11
0
    def __init__(self, inplanes, outplanes, batch_norm, leaky_relu):
        nn.Module.__init__(self)

        self.batch_norm = batch_norm
        self.leaky_relu = leaky_relu

        self.conv1 = scn.SubmanifoldConvolution(dimension=3,
            nIn         = inplanes,
            nOut        = outplanes,
            filter_size = 3,
            bias=False)

        if self.batch_norm:
            if self.leaky_relu: self.bn1 = scn.BatchNormLeakyReLU(outplanes)
            else:                self.bn1 = scn.BatchNormReLU(outplanes)

        self.conv2 = scn.SubmanifoldConvolution(dimension=3,
            nIn         = outplanes,
            nOut        = outplanes,
            filter_size = 3,
            bias        = False)

        if self.batch_norm:
            self.bn2 = scn.BatchNormalization(outplanes)

        self.residual = scn.Identity()

        if self.leaky_relu: self.relu = scn.LeakyReLU()
        else:                self.relu = scn.ReLU()

        self.add = scn.AddTable()
Пример #12
0
 def block(self, n_in, n_out):
     m = scn.Sequential()
     if self.residual_blocks:  # ResNet style blocks
         m.add(scn.ConcatTable().add(
             scn.Identity() if n_in ==
             n_out else scn.NetworkInNetwork(n_in, n_out, False)).add(
                 scn.Sequential().add(
                     scn.BatchNormLeakyReLU(
                         n_in, leakiness=self.leakiness)).add(
                             scn.SubmanifoldConvolution(
                                 self.dimension, n_in, n_out, 3,
                                 False)).add(
                                     scn.BatchNormLeakyReLU(
                                         n_out,
                                         leakiness=self.leakiness)).add(
                                             scn.SubmanifoldConvolution(
                                                 self.dimension, n_out,
                                                 n_out, 3, False))))
         m.add(scn.AddTable())
     else:  # VGG style blocks
         m.add(scn.BatchNormLeakyReLU(n_in, leakiness=self.leakiness))
         m.add(
             scn.SubmanifoldConvolution(self.dimension, n_in, n_out, 3,
                                        False))
     return m
Пример #13
0
    def __init__(self, cfg, name='yresnet_decoder'):
        super(YResNetDecoder, self).__init__(cfg, name='network_base')
        self.model_config = cfg[name]

        self.reps = self.model_config.get('reps',
                                          2)  # Conv block repetition factor
        self.kernel_size = self.model_config.get('kernel_size', 2)
        self.num_strides = self.model_config.get('num_strides', 5)
        self.num_filters = self.model_config.get('filters', 16)
        self.nPlanes = [
            i * self.num_filters for i in range(1, self.num_strides + 1)
        ]
        self.downsample = [self.kernel_size, 2]  # [filter size, filter stride]
        self.concat = scn.JoinTable()
        self.add = scn.AddTable()
        dropout_prob = self.model_config.get('dropout_prob', 0.5)

        self.encoder_num_filters = self.model_config.get(
            'encoder_num_filters', None)
        if self.encoder_num_filters is None:
            self.encoder_num_filters = self.num_filters
        self.encoder_nPlanes = [
            i * self.encoder_num_filters
            for i in range(1, self.num_strides + 1)
        ]

        # Define Sparse YResNet Decoder.
        self.decoding_block = scn.Sequential()
        self.decoding_conv = scn.Sequential()
        for idx, i in enumerate(list(range(self.num_strides - 2, -1, -1))):
            if idx == 0:
                m = scn.Sequential().add(
                    scn.BatchNormLeakyReLU(self.encoder_nPlanes[i + 1],
                                           leakiness=self.leakiness)).add(
                                               scn.Deconvolution(
                                                   self.dimension,
                                                   self.encoder_nPlanes[i + 1],
                                                   self.nPlanes[i],
                                                   self.downsample[0],
                                                   self.downsample[1],
                                                   self.allow_bias))
            else:
                m = scn.Sequential().add(
                    scn.BatchNormLeakyReLU(
                        self.nPlanes[i + 1], leakiness=self.leakiness)).add(
                            scn.Deconvolution(self.dimension,
                                              self.nPlanes[i + 1],
                                              self.nPlanes[i],
                                              self.downsample[0],
                                              self.downsample[1],
                                              self.allow_bias)).add(
                                                  scn.Dropout(p=dropout_prob))
            self.decoding_conv.add(m)
            m = scn.Sequential()
            for j in range(self.reps):
                self._resnet_block(m, self.nPlanes[i] + (self.encoder_nPlanes[i] \
                    if j == 0 else 0), self.nPlanes[i])
            self.decoding_block.add(m)
Пример #14
0
 def block(m, a, b):  # ResNet style blocks
     m.add(scn.ConcatTable()
           .add(scn.Identity() if a == b else scn.NetworkInNetwork(a, b, False))
           .add(scn.Sequential()
             .add(scn.BatchNormLeakyReLU(a, leakiness=leakiness))
             .add(scn.SubmanifoldConvolution(self._dimension, a, b, 3, False))
             .add(scn.BatchNormLeakyReLU(b, leakiness=leakiness))
             .add(scn.SubmanifoldConvolution(self._dimension, b, b, 3, False)))
      ).add(scn.AddTable())
Пример #15
0
 def __init__(self, inplanes, kernel, dim=3):
     torch.nn.Module.__init__(self)
     self.bnr1 = scn.BatchNormReLU(inplanes)
     self.subconv1 = scn.SubmanifoldConvolution(dim, inplanes, inplanes,
                                                kernel, 0)
     self.bnr2 = scn.BatchNormReLU(inplanes)
     self.subconv2 = scn.SubmanifoldConvolution(dim, inplanes, inplanes,
                                                kernel, 0)
     self.add = scn.AddTable()
Пример #16
0
def res(m, dimension, a, b):
    m.add(scn.ConcatTable()
          .add(scn.Identity() if a == b else scn.NetworkInNetwork(a, b, False))
          .add(scn.Sequential()
               .add(scn.BatchNormReLU(a))
               .add(scn.SubmanifoldConvolution(dimension, a, b, 3, False))
               .add(scn.BatchNormReLU(b))
               .add(scn.SubmanifoldConvolution(dimension, b, b, 3, False))))\
     .add(scn.AddTable())
Пример #17
0
def SparseResNet(dimension, nInputPlanes, layers):
    import sparseconvnet as scn
    """
    pre-activated ResNet
    e.g. layers = {{'basic',16,2,1},{'basic',32,2}}
    """
    nPlanes = nInputPlanes
    m = scn.Sequential()

    def residual(nIn, nOut, stride):
        if stride > 1:
            return scn.Convolution(dimension, nIn, nOut, 2, stride, False)
        elif nIn != nOut:
            return scn.NetworkInNetwork(nIn, nOut, False)
        else:
            return scn.Identity()

    for n, reps, stride in layers:
        for rep in range(reps):
            if rep == 0:
                m.add(scn.BatchNormReLU(nPlanes))
                tab = scn.ConcatTable()
                tab_seq = scn.Sequential()
                if stride == 1:
                    tab_seq.add(
                        scn.SubmanifoldConvolution(dimension, nPlanes, n, 3,
                                                   False))
                else:
                    tab_seq.add(
                        scn.Convolution(dimension, nPlanes, n, 2, stride,
                                        False))
                tab_seq.add(scn.BatchNormReLU(n))
                tab_seq.add(
                    scn.SubmanifoldConvolution(dimension, n, n, 3, False))
                tab.add(tab_seq)
                tab.add(residual(nPlanes, n, stride))
                m.add(tab)
            else:
                tab = scn.ConcatTable()
                tab_seq = scn.Sequential()
                tab_seq.add(scn.BatchNormReLU(nPlanes))
                tab_seq.add(
                    scn.SubmanifoldConvolution(dimension, nPlanes, n, 3,
                                               False))
                tab_seq.add(scn.BatchNormReLU(n))
                tab_seq.add(
                    scn.SubmanifoldConvolution(dimension, n, n, 3, False))
                tab.add(tab_seq)
                tab.add(scn.Identity())
                m.add(tab)
            nPlanes = n
            m.add(scn.AddTable())
    m.add(scn.BatchNormReLU(nPlanes))
    return m
Пример #18
0
 def baz(depth, nPlanes):
     if depth == 1:
         return scn.Sequential().add(foo(nPlanes)).add(bar(nPlanes, True))
     else:
         return scn.Sequential().add(foo(nPlanes)).add(scn.ConcatTable().add(bar(nPlanes,False)).add(
             scn.Sequential()\
                 .add(scn.BatchNormReLU(nPlanes))\
                 .add(scn.Convolution(dimension, nPlanes, l(nPlanes), 2, 2, False))\
                 .add(baz(depth-1,l(nPlanes)))\
                 .add(scn.UnPooling(dimension, 2, 2))
         )).add(scn.AddTable())
Пример #19
0
 def f(m, a, b):
     m.add(scn.ConcatTable().add(scn.Identity(
     ) if a == b else scn.NetworkInNetwork(a, b, self.allow_bias)).add(
         scn.Sequential().add(norm_layer(
             a, leakiness=self.leakiness)).add(
                 scn.SubmanifoldConvolution(
                     self.dimension, a, b, 3, self.allow_bias)).add(
                         norm_layer(b, leakiness=self.leakiness)).add(
                             scn.SubmanifoldConvolution(
                                 self.dimension, b, b, 3,
                                 self.allow_bias)))).add(scn.AddTable())
     return m
Пример #20
0
 def decoder_block(self, nPlanes, n, reps, stride):
     m = scn.Sequential()
     for rep in range(reps):
         m.add(scn.ConcatTable().add(
             scn.Sequential().add(scn.BatchNormReLU(nPlanes)).add(
                 scn.SubmanifoldConvolution(self.dimension, nPlanes, n, 3,
                                            False))
             # .add(scn.BatchNormReLU(n))
             # .add(scn.SubmanifoldConvolution(dimension, n, n, 3, False))
         ).add(scn.Identity()))
         m.add(scn.AddTable())
         nPlanes = n
     return m
Пример #21
0
 def block(m, a, b):
     if residual_blocks:  #ResNet style blocks
         m.add(scn.ConcatTable().add(scn.Identity(
         ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
             scn.Sequential().add(scn.BatchNormReLU(a)).add(
                 scn.SubmanifoldConvolution(dimension, a, b, 3, False)).add(
                     scn.BatchNormReLU(b)).add(
                         scn.SubmanifoldConvolution(dimension, b, b, 3,
                                                    False)))).add(
                                                        scn.AddTable())
     else:  #VGG style blocks
         m.add(scn.Sequential().add(scn.BatchNormReLU(a)).add(
             scn.SubmanifoldConvolution(dimension, a, b, 3, False)))
Пример #22
0
 def foo(m,np):
     for _ in range(reps):
         if residual: #ResNet style blocks
             m.add(scn.ConcatTable()
                   .add(scn.Identity())
                   .add(scn.Sequential()
                     .add(scn.BatchNormLeakyReLU(np,leakiness=leakiness))
                     .add(scn.SubmanifoldConvolution(dimension, np, np, 3, False))
                     .add(scn.BatchNormLeakyReLU(np,leakiness=leakiness))
                     .add(scn.SubmanifoldConvolution(dimension, np, np, 3, False)))
              ).add(scn.AddTable())
         else: #VGG style blocks
             m.add(scn.BatchNormLeakyReLU(np,leakiness=leakiness)
             ).add(scn.SubmanifoldConvolution(dimension, np, np, 3, False))
Пример #23
0
 def block(self, m, a, b, dimension=3, residual_blocks=False, leakiness=0):  # default using residual_block
     if residual_blocks: #ResNet style blocks
         m.add(scn.ConcatTable()
               .add(scn.Identity() if a == b else scn.NetworkInNetwork(a, b, False))
               .add(scn.Sequential()
                 .add(scn.BatchNormLeakyReLU(a,leakiness=leakiness))
                 .add(scn.SubmanifoldConvolution(dimension, a, b, 3, False))
                 .add(scn.BatchNormLeakyReLU(b,leakiness=leakiness))
                 .add(scn.SubmanifoldConvolution(dimension, b, b, 3, False)))
          ).add(scn.AddTable())
     else: #VGG style blocks
         m.add(scn.Sequential()
              .add(scn.BatchNormLeakyReLU(a,leakiness=leakiness))
              .add(scn.SubmanifoldConvolution(dimension, a, b, 3, False)))
Пример #24
0
 def baz(nPlanes):
     m=scn.Sequential()
     foo(m,nPlanes[0])
     if len(nPlanes)==1:
         bar(m,nPlanes[0],True)
     else:
         a=scn.Sequential()
         bar(a,nPlanes,False)
         b=scn.Sequential(
             scn.BatchNormLeakyReLU(nPlanes,leakiness=leakiness),
             scn.Convolution(dimension, nPlanes[0], nPlanes[1], downsample[0], downsample[1], False),
             baz(nPlanes[1:]),
             scn.UnPooling(dimension, downsample[0], downsample[1]))
         m.add(ConcatTable(a,b))
         m.add(scn.AddTable())
Пример #25
0
def SparseResNet(dimension, nInputPlanes, layers, mom=0.99):
    """
    pre-activated ResNet
    e.g. layers = {{'basic',16,2,1},{'basic',32,2}}
    """
    nPlanes = nInputPlanes
    m = scn.Sequential()

    def residual(nIn, nOut, stride):
        if stride > 1:
            return scn.Convolution(dimension, nIn, nOut, 3, stride, False)
        elif nIn != nOut:
            return scn.NetworkInNetwork(nIn, nOut, False)
        else:
            return scn.Identity()

    for blockType, n, reps, stride in layers:
        for rep in range(reps):
            if blockType[0] == 'b':  # basic block
                if rep == 0:
                    m.add(scn.BatchNormReLU(nPlanes, momentum=mom, eps=1e-5))
                    m.add(scn.ConcatTable().add(scn.Sequential().add(
                        scn.SubmanifoldConvolution(dimension, nPlanes, n, 3,
                                                   False) if stride ==
                        1 else scn.Convolution(
                            dimension, nPlanes, n, 3, stride, False)).add(
                                scn.BatchNormReLU(
                                    n, momentum=mom, eps=1e-5)).add(
                                        scn.SubmanifoldConvolution(
                                            dimension, n, n, 3, False))).add(
                                                residual(nPlanes, n, stride)))
                else:
                    m.add(scn.ConcatTable().add(scn.Sequential().add(
                        scn.BatchNormReLU(
                            nPlanes, momentum=mom, eps=1e-5)).add(
                                scn.SubmanifoldConvolution(
                                    dimension, nPlanes, n, 3, False)).add(
                                        scn.BatchNormReLU(
                                            n, momentum=mom, eps=1e-5)).add(
                                                scn.SubmanifoldConvolution(
                                                    dimension, n, n, 3,
                                                    False))).add(
                                                        scn.Identity()))
            nPlanes = n
            m.add(scn.AddTable())
    m.add(scn.BatchNormReLU(nPlanes, momentum=mom, eps=1e-5))
    return m
Пример #26
0
    def __init__(self, inplanes, kernel, stride, bias=False, dim=3):
        torch.nn.Module.__init__(self)

        outplanes = int(inplanes / 2)

        #f1
        self.bnr1 = scn.BatchNormReLU(inplanes)
        self.deconv1 = scn.Deconvolution(dim, inplanes, outplanes, kernel,
                                         stride, bias)
        self.bnr2 = scn.BatchNormReLU(outplanes)
        self.subconv = scn.SubmanifoldConvolution(dim, outplanes, outplanes,
                                                  kernel, bias)

        #f2
        self.deconv2 = scn.Deconvolution(dim, inplanes, outplanes, kernel,
                                         stride, bias)

        self.add = scn.AddTable()
Пример #27
0
 def __init__(self, inplanes, planes, stride=1, upsample=None, **kwargs):
     super(TransBasicBlockSparse, self).__init__()
     self.conv1 = conv3x3_sparse(inplanes, inplanes)
     self.bn1 = scn.BatchNormReLU(inplanes)
     self.relu = scn.ReLU()
     if upsample is not None and stride != 1:
         self.conv2 = scn.Sequential(
             scn.SparseToDense(2,inplanes),
             nn.ConvTranspose2d(inplanes, planes,
                               kernel_size=2, stride=stride, padding=0,
                               output_padding=0, bias=False),
             scn.DenseToSparse(2)
         )
     else:
         self.conv2 = conv3x3_sparse(inplanes, planes, stride)
     self.bn2 = scn.BatchNormalization(planes)
     self.add = scn.AddTable()
     self.upsample = upsample
     self.stride = stride
Пример #28
0
 def __init__(self):
     super(Model, self).__init__()
     self.inputLayer = scn.InputLayer(dimension, spatial_size=512, mode=3)
     self.initialconv = scn.SubmanifoldConvolution(dimension, nPlanes, 64,
                                                   7, False)
     self.residual = scn.Identity()
     self.add = scn.AddTable()
     self.sparsebl11 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 64, 64, 3, False)).add(
             scn.BatchNormLeakyReLU(64)).add(
                 scn.SubmanifoldConvolution(dimension, 64, 64, 3, False))
     self.sparsebl12 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 64, 64, 3, False)).add(
             scn.BatchNormLeakyReLU(64)).add(
                 scn.SubmanifoldConvolution(dimension, 64, 64, 3, False))
     self.sparsebl21 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 128, 128, 3, False)).add(
             scn.BatchNormLeakyReLU(128)).add(
                 scn.SubmanifoldConvolution(dimension, 128, 128, 3, False))
     self.sparsebl22 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 128, 128, 3, False)).add(
             scn.BatchNormLeakyReLU(128)).add(
                 scn.SubmanifoldConvolution(dimension, 128, 128, 3, False))
     self.relu1 = scn.LeakyReLU(64)
     self.relu2 = scn.LeakyReLU(128)
     self.downsample1 = scn.Sequential().add(
         scn.Convolution(dimension, 64, 64, [2, 2, 2], [2, 2, 2],
                         False)).add(scn.BatchNormLeakyReLU(64))
     self.downsample2 = scn.Sequential().add(
         scn.Convolution(dimension, 64, 128, [2, 2, 2], [2, 2, 2],
                         False)).add(scn.BatchNormLeakyReLU(128))
     self.downsample3 = scn.Sequential().add(
         scn.Convolution(dimension, 128, 64, [4, 4, 4], [4, 4, 4],
                         False)).add(scn.BatchNormLeakyReLU(64))
     self.downsample4 = scn.Sequential().add(
         scn.Convolution(dimension, 64, 2, [4, 4, 4], [4, 4, 4],
                         False)).add(scn.BatchNormLeakyReLU(2))
     self.sparsetodense = scn.SparseToDense(dimension, 2)
     self.dropout1 = nn.Dropout(0.5)
     self.dropout2 = nn.Dropout(0.5)
     self.linear2 = nn.Linear(2 * 8 * 8 * 8, 2)
     self.linear3 = nn.Linear(2, 1)
Пример #29
0
def resnet_block(dimension,
                 n_in,
                 n_out,
                 kernel,
                 leakiness=0,
                 computation='convolution'):
    '''Build and return ResNet block
    '''

    assert computation in [
        'submanifoldconvolution', 'convolution', 'fullconvolution',
        'deconvolution'
    ]
    if computation == 'convolution':
        computation = lambda n_in, n_out: scn.Convolution(
            dimension, n_in, n_out, kernel[0], kernel[1], False)
    elif computation == 'submanifoldconvolution':
        assert type(
            kernel
        ) == int, f"`kernel` must be int, {type(kernel)} was provided"
        computation = lambda n_in, n_out: scn.SubmanifoldConvolution(
            dimension, n_in, n_out, kernel, False)
    elif computation == 'deconvolution':
        assert type(
            kernel
        ) == int, f"`kernel` must be int, {type(kernel)} was provided"
        computation = lambda n_in, n_out: scn.Deconvolution(
            dimension, n_in, n_out, kernel, kernel, False)
    else:
        computation = lambda n_in, n_out: scn.FullConvolution(
            dimension, n_in, n_out, kernel[0], kernel[1], False)

    block = scn.Sequential()
    block.add(scn.ConcatTable(
    ).add(scn.NetworkInNetwork(n_in, n_out, False)).add(scn.Sequential().add(
        #                scn.BatchNormLeakyReLU(n_in, leakiness=leakiness)
        scn.LeakyReLU(leakiness)).add(computation(n_in, n_out)).add(
            #                scn.BatchNormLeakyReLU(n_out, leakiness=leakiness)
            scn.LeakyReLU(leakiness)).add(computation(n_out, n_out)))).add(
                scn.AddTable())
    return block
Пример #30
0
 def _resnet_block(self, module, a, b):
     '''
     Utility Method for attaching ResNet-Style Blocks.
     INPUTS:
         - module (scn Module): network module to attach ResNet block.
         - a (int): number of input feature dimension
         - b (int): number of output feature dimension
     RETURNS:
         None (operation is in-place)
     '''
     module.add(scn.ConcatTable().add(scn.Identity(
     ) if a == b else scn.NetworkInNetwork(a, b, self.allow_bias)).add(
         scn.Sequential().add(
             scn.BatchNormLeakyReLU(a, leakiness=self.leakiness)).add(
                 scn.SubmanifoldConvolution(
                     self.dimension, a, b, 3, self.allow_bias)).add(
                         scn.BatchNormLeakyReLU(
                             b, leakiness=self.leakiness)).add(
                                 scn.SubmanifoldConvolution(
                                     self.dimension, b, b, 3,
                                     self.allow_bias)))).add(scn.AddTable())