Пример #1
0
 def __init__(self, model, recipe):
     self.enabled = bool(recipe)
     self.model = model.module if is_parallel(model) else model
     self.recipe = recipe
     self.manager = ScheduledModifierManager.from_yaml(
         recipe) if self.enabled else None
     self.logger = None
Пример #2
0
    def _setup_manager(
        self, kwargs
    ) -> Tuple[Optional[ScheduledModifierManager],
               List[ScheduledModifierManager]]:
        manager = None
        arch_managers = []

        if self.recipe is not None:
            manager = ScheduledModifierManager.from_yaml(
                self.recipe, recipe_variables=self.recipe_args)
            _LOGGER.info(
                "Loaded SparseML recipe variable into manager for recipe: "
                f"{self.recipe} and recipe_variables: {self.recipe_args}")

        arch_recipe_paths = glob.glob(
            os.path.join(self.model_state_path, RECIPE_REGEX))
        if arch_recipe_paths:
            arch_managers = [
                ScheduledModifierManager.from_yaml(path)
                for path in arch_recipe_paths
            ]
            _LOGGER.info(
                f"Loaded SparseML {len(arch_recipe_paths)} recipes into architecture "
                f"managers from {arch_recipe_paths}")

        if manager is not None and manager in arch_managers:
            # new recipe and the one stored with model are the same,
            # keep manager and remove from arch_managers to keep from applying twice.
            # remove this logic once recipe stages land
            arch_managers.remove(manager)
            _LOGGER.info(
                "Removed duplicate SparseML recipe from arch_managers that matched "
                "the recipe variable to prevent double application")

        if (manager is not None and manager.max_epochs and "args" in kwargs
                and (hasattr(kwargs["args"], "num_train_epochs"))):
            _LOGGER.warning(
                f"Overriding num_train_epochs from Recipe to {manager.max_epochs}"
            )
            kwargs["args"].num_train_epochs = manager.max_epochs

        return manager, arch_managers
Пример #3
0
 def __init__(self, recipe_path):
     if not _SPARSEML_AVAILABLE:
         if not _PL_GREATER_EQUAL_1_4_5:
             raise MisconfigurationException(
                 "SparseML requires PyTorch Lightning 1.4.5 or greater.")
         if not _TORCH_MAX_VERSION_1_8_1:
             raise MisconfigurationException(
                 "SparseML requires PyTorch version 1.8.1 or lower.")
         raise MisconfigurationException(
             "SparseML has not be installed, install with pip install sparseml"
         )
     self.manager = ScheduledModifierManager.from_yaml(recipe_path)
Пример #4
0
def create_scheduled_optimizer(
    train_args: Any,
    model: Module,
    train_loader: DataLoader,
    loggers: List[Any],
) -> Tuple[int, ScheduledOptimizer, ScheduledModifierManager]:
    """
    :param train_args : An object with task specific config
    :param model: model architecture to train
    :param train_loader: A DataLoader for training data
    :param loggers: List of loggers to use during training process
    :type train_args: TrainingArguments
    """
    # # optimizer setup
    optim_const = torch.optim.__dict__[train_args.optim]
    optim = optim_const(model.parameters(),
                        lr=train_args.init_lr,
                        **train_args.optim_args)
    print(f"created optimizer: {optim}")
    print(
        "note, the lr for the optimizer may not reflect the manager yet until "
        "the recipe config is created and run")

    # restore from previous check point
    if train_args.checkpoint_path:
        # currently optimizer restoring is unsupported
        # mapping of the restored params to the correct device is not working
        # load_optimizer(args.checkpoint_path, optim)
        epoch = 0  # load_epoch(args.checkpoint_path) + 1
        print(f"restored checkpoint from {train_args.checkpoint_path} for "
              f"epoch {epoch - 1}")
    else:
        epoch = 0

    # modifier setup
    add_mods = (ConstantPruningModifier.from_sparse_model(model)
                if train_args.sparse_transfer_learn else None)
    manager = ScheduledModifierManager.from_yaml(
        file_path=train_args.recipe_path, add_modifiers=add_mods)
    optim = ScheduledOptimizer(
        optim,
        model,
        manager,
        steps_per_epoch=len(train_loader),
        loggers=loggers,
    )
    print(f"created manager: {manager}")
    return epoch, optim, manager
Пример #5
0
def main(args):
    ############################
    # logging and saving setup #
    ############################
    save_dir = os.path.abspath(os.path.expanduser(args.save_dir))

    # get unique model tag, defaults to '{model_name}'
    if not args.model_tag:
        model_tag = args.model.replace("/", ".")
        model_id = model_tag
        model_inc = 0

        while os.path.exists(os.path.join(args.save_dir, model_id)):
            model_inc += 1
            model_id = "{}__{:02d}".format(model_tag, model_inc)
    else:
        model_id = args.model_tag
    save_dir = os.path.join(save_dir, model_id)
    create_dirs(save_dir)
    print("Model id is set to {}".format(model_id))

    ###########################
    # standard training setup #
    ###########################

    # create data loaders
    train_loader, _, _ = _create_imagefolder_dataloader(args, train=True)
    val_loader, num_classes, image_shape = _create_imagefolder_dataloader(
        args, train=False
    )
    dataloaders = {"train": train_loader, "val": val_loader}

    # create model
    model = _get_torchvision_model(
        args.model,
        num_classes,
        args.pretrained,
        args.checkpoint_path,
    )
    print("created model: {}".format(model))
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    print("using device: {}".format(device))

    # create standard SGD optimizer and cross entropy loss function
    criterion = CrossEntropyLoss()
    optimizer = SGD(
        model.parameters(), lr=0.001, momentum=0.9
    )  # lr will be overridden by recipe

    ##########################
    # add sparseml modifiers #
    ##########################
    manager = ScheduledModifierManager.from_yaml(args.recipe_path)
    optimizer = ScheduledOptimizer(
        optimizer,
        model,
        manager,
        steps_per_epoch=len(train_loader),
        loggers=[PythonLogger()],
    )

    ########################
    # torchvision training #
    ########################
    model, val_acc_history = train_model(
        model,
        dataloaders,
        criterion,
        optimizer,
        device,
        num_epochs=manager.max_epochs,
        is_inception="inception" in args.model,
    )

    ########################
    # export trained model #
    ########################
    exporter = ModuleExporter(model, save_dir)
    sample_input = torch.randn(image_shape).unsqueeze(0)  # sample batch for ONNX export
    exporter.export_onnx(sample_input)
    exporter.export_pytorch()
    print("Model ONNX export and PyTorch weights saved to {}".format(save_dir))
Пример #6
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    ####################################################################################
    # Start - SparseML optional load weights from SparseZoo
    ####################################################################################
    if args.initial_checkpoint == "zoo":
        # Load checkpoint from base weights associated with given SparseZoo recipe
        if args.sparseml_recipe.startswith("zoo:"):
            args.initial_checkpoint = Zoo.download_recipe_base_framework_files(
                args.sparseml_recipe,
                extensions=[".pth.tar", ".pth"]
            )[0]
        else:
            raise ValueError(
                "Attempting to load weights from SparseZoo recipe, but not given a "
                "SparseZoo recipe stub.  When initial-checkpoint is set to 'zoo'. "
                "sparseml-recipe must start with 'zoo:' and be a SparseZoo model "
                f"stub. sparseml-recipe was set to {args.sparseml_recipe}"
            )
    elif args.initial_checkpoint.startswith("zoo:"):
        # Load weights from a SparseZoo model stub
        zoo_model = Zoo.load_model_from_stub(args.initial_checkpoint)
        args.initial_checkpoint = zoo_model.download_framework_files(extensions=[".pth"])
    ####################################################################################
    # End - SparseML optional load weights from SparseZoo
    ####################################################################################

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)
    if args.num_classes is None:
        assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
        args.num_classes = model.num_classes  # FIXME handle model default vs config num_classes more elegantly

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model, args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    # create the train and eval datasets
    dataset_train = create_dataset(
        args.dataset, root=args.data_dir, split=args.train_split, is_training=True, batch_size=args.batch_size)
    dataset_eval = create_dataset(
        args.dataset, root=args.data_dir, split=args.val_split, is_training=False, batch_size=args.batch_size)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    ####################################################################################
    # Start SparseML Integration
    ####################################################################################
    sparseml_loggers = (
        [PythonLogger(), TensorBoardLogger(log_path=output_dir)]
        if output_dir
        else None
    )
    manager = ScheduledModifierManager.from_yaml(args.sparseml_recipe)
    optimizer = ScheduledOptimizer(
        optimizer,
        model,
        manager,
        steps_per_epoch=len(loader_train),
        loggers=sparseml_loggers
    )
    # override lr scheduler if recipe makes any LR updates
    if any("LearningRate" in str(modifier) for modifier in manager.modifiers):
        _logger.info("Disabling timm LR scheduler, managing LR using SparseML recipe")
        lr_scheduler = None
    if manager.max_epochs:
        _logger.info(
            f"Overriding max_epochs to {manager.max_epochs} from SparseML recipe"
        )
        num_epochs = manager.max_epochs or num_epochs
    ####################################################################################
    # End SparseML Integration
    ####################################################################################

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_one_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

        #################################################################################
        # Start SparseML ONNX Export
        #################################################################################
        if output_dir:
            _logger.info(
                f"training complete, exporting ONNX to {output_dir}/model.onnx"
            )
            exporter = ModuleExporter(model, output_dir)
            exporter.export_onnx(torch.randn((1, *data_config["input_size"])))
        #################################################################################
        # End SparseML ONNX Export
        #################################################################################

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
Пример #7
0
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# flake8: noqa

import math

from sparseml.pytorch.optim import ScheduledModifierManager, ScheduledOptimizer
from sparseml.pytorch.utils import PythonLogger, TensorBoardLogger

manager = ScheduledModifierManager.from_yaml("/PATH/TO/config.yaml")
optimizer = ScheduledOptimizer(
    optimizer,
    MODEL,
    manager,
    steps_per_epoch=math.ceil(len(TRAIN_DATASET) / TRAIN_BATCH_SIZE),
    loggers=[TensorBoardLogger(), PythonLogger()],
)
Пример #8
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt') or weights.endswith(
        '.pth')  # SparseML integration
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = _load_checkpoint_model_state_dict(
            ckpt)  # SparseML integration
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ####################################################################################
    # Start SparseML Integration - optional EMA
    ####################################################################################
    ema = ModelEMA(model) if rank in [-1, 0] and opt.use_ema else None
    ####################################################################################
    # End SparseML Integration - optional EMA
    ####################################################################################

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        if ema:
            ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    ####################################################################################
    # Start SparseML Integration
    ####################################################################################
    from sparseml.pytorch.nn import replace_activations
    from sparseml.pytorch.optim import ScheduledModifierManager, ScheduledOptimizer
    from sparseml.pytorch.utils import is_parallel_model, PythonLogger, TensorBoardLogger

    if not opt.no_leaky_relu_override:  # use LeakyReLU activations
        model = replace_activations(model, "lrelu", inplace=True)

    manager = ScheduledModifierManager.from_yaml(opt.sparseml_recipe)
    optimizer = ScheduledOptimizer(
        optimizer,
        model if not is_parallel_model(model) else model.module,
        manager,
        steps_per_epoch=len(dataloader),
        loggers=[PythonLogger(),
                 TensorBoardLogger(writer=tb_writer)])
    # override lr scheduler if recipe makes any LR updates
    if any("LearningRate" in str(modifier) for modifier in manager.modifiers):
        logger.info(
            "Disabling yolo LR scheduler, managing LR using SparseML recipe")
        scheduler = None

    # disable model pickling if QAT is set
    qat = False
    if any("Quantization" in str(modifier) for modifier in manager.modifiers):
        logger.info("Disabling pickling for Yolo model, QAT modifiers present")
        qat = True

    if manager.max_epochs:
        epochs = manager.max_epochs or epochs  # override num_epochs
        logger.info(
            f"overriding number of epochs from SparseML manager to {manager.max_epochs}"
        )
    ####################################################################################
    # End SparseML Integration
    ####################################################################################

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    if scheduler:  # SparseML integration
        scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=(cuda and opt.use_amp))
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    if scheduler:  # SparseML integration, do not force warmup lr when overriding
                        x['lr'] = np.interp(ni, xi, [
                            hyp['warmup_bias_lr'] if j == 2 else 0.0,
                            x['initial_lr'] * lf(epoch)
                        ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=(cuda and opt.use_amp)):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 10 and wandb:
                    wandb.log(
                        {
                            "Mosaics": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob('train*.jpg')
                                if x.exists()
                            ]
                        },
                        commit=False)

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        if scheduler:  # SparseML integration
            scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(model,
                                include=[
                                    'yaml', 'nc', 'hyp', 'gr', 'names',
                                    'stride', 'class_weights'
                                ])

            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=batch_size * 2,
                    imgsz=imgsz_test,
                    model=ema.ema if ema else model,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    verbose=nc < 50 and final_epoch,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0,
                    compute_loss=compute_loss,
                    half_precision=opt.use_amp)  # SparseML integration

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x}, step=epoch,
                              commit=tag == tags[-1])  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt_model = ema.ema if ema else model if not qat else model.state_dict(
                    )  # SparseML integration
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ckpt_model,  # SparseML integration
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists(
            ) and not qat:  # SparseML integration - qat state dict incompatible
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'confusion_matrix.png',
                    *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final),
                                       type='model',
                                       name=save_dir.stem)

        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for conf, iou, save_json in ([0.25, 0.45,
                                          False], [0.001, 0.65,
                                                   True]):  # speed, mAP tests
                # SparseML integration - load test model
                test_model = model if qat else attempt_load(final, device)
                if opt.use_amp:
                    test_model = test_model.half()
                results, _, _ = test.test(
                    opt.data,
                    batch_size=batch_size * 2,
                    imgsz=imgsz_test,
                    conf_thres=conf,
                    iou_thres=iou,
                    model=test_model,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    save_json=save_json,
                    plots=False,
                    half_precision=opt.use_amp)  # SparseML integration
        #################################################################################
        # Start SparseML ONNX Export
        #################################################################################
            from sparseml.pytorch.utils import ModuleExporter
            from sparseml.pytorch.utils.quantization import skip_onnx_input_quantize

            onnx_path = f"{save_dir}/model.onnx"
            logger.info(f"training complete, exporting ONNX to {onnx_path}")
            export_model = model.module if is_parallel_model(model) else model
            export_model.model[
                -1].export = True  # do not export grid post-procesing
            exporter = ModuleExporter(export_model, save_dir)
            exporter.export_onnx(torch.randn(1, 3, imgsz, imgsz),
                                 convert_qat=True)
            if qat:
                skip_onnx_input_quantize(onnx_path, onnx_path)
        #################################################################################
        # End SparseML ONNX Export
        #################################################################################

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Пример #9
0
def test_oracle_recipe_application(oracle_test_params):
    manager = ScheduledModifierManager.from_yaml(oracle_test_params.generated_recipe)
    model = oracle_test_params.model_lambda()
    manager.apply(model)
    assert model is not None
Пример #10
0
def train(
    working_dir: str,
    config_path: str,
    model: Module,
    train_dataset: Dataset,
    val_dataset: Dataset,
    batch_size: int,
    optim_const: Callable[[Module], Optimizer],
    loss: Union[LossWrapper, Callable[[Any, Any], Tensor]],
    devices: str,
):
    """
    Dataset setup
    """
    LOGGER.info("batch_size set to {}".format(batch_size))
    LOGGER.info("train_dataset set to {}".format(train_dataset))
    LOGGER.info("val_dataset set to {}".format(val_dataset))

    train_loader = DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=8,
        pin_memory=True,
    )
    val_loader = DataLoader(
        val_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=8,
        pin_memory=True,
    )

    """
    Model, optimizer, loss setup
    """
    model_dir = clean_path(os.path.join(working_dir, "model"))
    optim = optim_const(model)

    LOGGER.info("model set to {}".format(model))
    LOGGER.info("optimizer set to {}".format(optim))
    LOGGER.info("loss set to {}".format(loss))
    LOGGER.info("devices set to {}".format(devices))

    """
    Manager and config setup
    """
    manager = ScheduledModifierManager.from_yaml(config_path)
    logs_dir = clean_path(os.path.join(working_dir, "logs"))
    loggers = [TensorBoardLogger(logs_dir), PythonLogger()]
    optim = ScheduledOptimizer(
        optim, model, manager, steps_per_epoch=len(train_loader), loggers=loggers
    )

    """
    Training and testing
    """
    model, device, device_ids = model_to_device(model, devices)
    trainer = ModuleTrainer(model, device, loss, optim, loggers=loggers)
    tester = ModuleTester(model, device, loss, loggers=loggers, log_steps=-1)

    epoch = -1
    tester.run_epoch(val_loader, epoch=epoch)

    for epoch in range(manager.max_epochs):
        LOGGER.info("starting training epoch {}".format(epoch))
        train_res = trainer.run_epoch(train_loader, epoch)
        LOGGER.info("finished training epoch {}: {}".format(epoch, train_res))
        val_res = tester.run_epoch(val_loader, epoch)
        LOGGER.info("finished validation epoch {}: {}".format(epoch, val_res))

    exporter = ModuleExporter(model, model_dir)
    exporter.export_pytorch(optim, epoch)

    for data in val_loader:
        exporter.export_onnx(data)