Пример #1
0
 def angvec(cls, theta, v, unit='rad'):
     v = argcheck.getvector(v, 3)
     argcheck.isscalar(theta)
     theta = argcheck.getunit(theta, unit)
     return UnitQuaternion(s=math.cos(theta / 2),
                           v=math.sin(theta / 2) * tr.unit(v),
                           norm=False)
Пример #2
0
    def kcircle(self, r, hw=None):
        """
        Circular structuring element

        :param r: radius of circle structuring element, or 2-vector (see below)
        :type r: float, 2-tuple or 2-element vector of floats
        :param hw: half-width of kernel
        :type hw: integer
        :return k: kernel
        :rtype: numpy array (2 * 3 * sigma + 1, 2 * 3 * sigma + 1)

        - ``IM.kcircle(r)`` is a square matrix ``(w,w)`` where ``w=2r+1`` of
          zeros with a maximal centred circular region of radius ``r`` pixels
          set to one.

        - ``IM.kcircle(r,w)`` as above but the dimension of the kernel is
          explicitly specified.

        Example:

        .. autorun:: pycon

        .. note::

            - If ``r`` is a 2-element vector the result is an annulus of ones,
              and the two numbers are interpretted as inner and outer radii.
        """

        # check valid input:
        if not argcheck.isscalar(r):  # r.shape[1] > 1:
            r = argcheck.getvector(r)
            rmax = r.max()
            rmin = r.min()
        else:
            rmax = r

        if hw is not None:
            w = hw * 2 + 1
        elif hw is None:
            w = 2 * rmax + 1

        s = np.zeros((np.int(w), np.int(w)))
        c = np.floor(w / 2.0)

        if not argcheck.isscalar(r):
            s = self.kcircle(rmax, w) - self.kcircle(rmin, w)
        else:
            x, y = self.meshgrid(s)
            x = x - c
            y = y - c
            ll = np.where(np.round((x**2 + y**2 - r**2) <= 0))
            s[ll] = 1
        return s
Пример #3
0
 def __init__(self, s=None, v=None, check=True, norm=True):
     """        
     A unit quaternion is one for which M{s^2+vx^2+vy^2+vz^2 = 1}.
     A quaternion can be considered as a rotation about a vector in space where
     q = cos (theta/2) sin(theta/2) <vx vy vz>
     where <vx vy vz> is a unit vector.
     :param s: scalar
     :param v: vector
     """
     if s is None and v is None:
         self.data = [ quat.qone() ]
         
     elif argcheck.isscalar(s) and argcheck.isvector(v,3):
         self.data = [ np.r_[s, argcheck.getvector(v)] ]
         
     elif argcheck.isvector(s,4):
         self.data = [ argcheck.getvector(s) ]
         
     elif type(s) is list:
         if check:
             assert argcheck.isvectorlist(s,4), 'list must comprise 4-vectors'
         self.data = s
     
     elif isinstance(s, np.ndarray) and s.shape[1] == 4:
         self.data = [x for x in s]
         
     else:
         raise ValueError('bad argument to Quaternion constructor')
Пример #4
0
    def lspbfunc(t):

        p = []
        pd = []
        pdd = []

        if isscalar(t):
            t = [t]
        for tk in t:
            if tk <= tb:
                # initial blend
                pk = q0 + a / 2 * tk**2
                pdk = a * tk
                pddk = a
            elif tk <= (tf - tb):
                # linear motion
                pk = (qf + q0 - V * tf) / 2 + V * tk
                pdk = V
                pddk = 0
            else:
                # final blend
                pk = qf - a / 2 * tf**2 + a * tf * tk - a / 2 * tk**2
                pdk = a * tf - a * tk
                pddk = -a
            p.append(pk)
            pd.append(pdk)
            pdd.append(pddk)
        return (np.array(p), np.array(pd), np.array(pdd))
Пример #5
0
    def __init__(self, arg=None, *, unit='rad', check=True):
        """
        Construct new SO(2) object

        :param unit: angular units 'deg' or 'rad' [default] if applicable
        :type unit: str, optional
        :param check: check for valid SO(2) elements if applicable, default to True
        :type check: bool
        :return: SO(2) rotation
        :rtype: SO2 instance

        - ``SO2()`` is an SO2 instance representing a null rotation -- the identity matrix.
        - ``SO2(θ)`` is an SO2 instance representing a rotation by ``θ`` radians.  If ``θ`` is array_like
          `[θ1, θ2, ... θN]` then an SO2 instance containing a sequence of N rotations.
        - ``SO2(θ, unit='deg')`` is an SO2 instance representing a rotation by ``θ`` degrees.  If ``θ`` is array_like
          `[θ1, θ2, ... θN]` then an SO2 instance containing a sequence of N rotations.
        - ``SO2(R)`` is an SO2 instance with rotation described by the SO(2) matrix R which is a 2x2 numpy array.  If ``check``
          is ``True`` check the matrix belongs to SO(2).
        - ``SO2([R1, R2, ... RN])`` is an SO2 instance containing a sequence of N rotations, each described by an SO(2) matrix
          Ri which is a 2x2 numpy array. If ``check`` is ``True`` then check each matrix belongs to SO(2).
        - ``SO2([X1, X2, ... XN])`` is an SO2 instance containing a sequence of N rotations, where each Xi is an SO2 instance.

        """
        if  super().arghandler(arg, check=check):
            return

        elif argcheck.isscalar(arg):
            self.data = [tr.rot2(arg, unit=unit)]

        elif argcheck.isvector(arg):
            self.data = [tr.rot2(x, unit=unit) for x in argcheck.getvector(arg)]

        else:
            raise ValueError('bad argument to constructor')
Пример #6
0
    def __mul__(left, right):
        """
        multiply quaternion
        
        :arg left: left multiplicand
        :type left: Quaternion, UnitQuaternion
        :arg right: right multiplicand
        :type left: Quaternion, UnitQuaternion, 3-vector, float
        :return: product
        :rtype: Quaternion, UnitQuaternion
        :raises: ValueError
        
        ==============   ==============   ==============  ================
                   Multiplicands                   Product
        -------------------------------   --------------------------------
            left             right            type           result
        ==============   ==============   ==============  ================
        Quaternion       Quaternion       Quaternion      Hamilton product
        Quaternion       UnitQuaternion   Quaternion      Hamilton product
        Quaternion       scalar           Quaternion      scalar product
        UnitQuaternion   Quaternion       Quaternion      Hamilton product
        UnitQuaternion   UnitQuaternion   UnitQuaternion  Hamilton product
        UnitQuaternion   scalar           Quaternion      scalar product
        UnitQuaternion   3-vector         3-vector        vector rotation
        ==============   ==============   ==============  ================

        Any other input combinations result in a ValueError.
        
        Note that left and right can have a length greater than 1 in which case:
        
        ====   =====   ====  ================================
        left   right   len     operation
        ====   =====   ====  ================================
         1      1       1    ``prod = left * right``
         1      N       N    ``prod[i] = left * right[i]``
         N      1       N    ``prod[i] = left[i] * right``
         N      N       N    ``prod[i] = left[i] * right[i]``
         N      M       -    ``ValueError``
        ====   =====   ====  ================================

        A scalar of length N is a list, tuple or numpy array.
        A 3-vector of length N is a 3xN numpy array, where each column is a 3-vector.
        """
        if type(left) == type(right):
            # quaternion * quaternion case (same class)
            return left.__class__( left._op2(right, lambda x, y: quat.qqmul(x, y) ) )
        elif isinstance(other, Quaternion):
            # quaternion * quaternion case (different class)
            return Quaternion( left._op2(right, lambda x, y: quat.qqmul(x, y) ) )
        elif argcheck.isscalar(right):
            # quaternion * scalar case
            print('scalar * quat')
            return Quaternion([right*q._A for q in left])
        elif isinstance(self, UnitQuaternion) and argcheck.isvector(right,3):
            # scalar * vector case
            return quat.qvmul(left._A, argcheck.getvector(right,3))
        else:
            raise ValueError('operands to * are of different types')
            
        return left._op2(right, lambda x, y: x @ y )
Пример #7
0
    def _op2(left, right, op):
        """
        Perform binary operation

        :param left: left side of comparison
        :type self: SO2, SE2, SO3, SE3
        :param right: right side of comparison
        :type self: SO2, SE2, SO3, SE3
        :param op: binary operation
        :type op: callable
        :raises ValueError: arguments are not compatible
        :return: list of matrices
        :rtype: list

        Peform a binary operation on a pair of operands.  If either operand
        contains a sequence the results is a sequence accordinging to this
        truth table.

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``ret = op(left, right)``
         1          M             M    ``ret[i] = op(left, right[i])``
         N          1             M    ``ret[i] = op(left[i], right)``
         M          M             M    ``ret[i] = op(left[i], right[i])``
        =========   ==========   ====  ================================

        """

        if isinstance(right, left.__class__):
            # class by class
            if len(left) == 1:
                if len(right) == 1:
                    #print('== 1x1')
                    return op(left.A, right.A)
                else:
                    #print('== 1xN')
                    return [op(left.A, x) for x in right.A]
            else:
                if len(right) == 1:
                    #print('== Nx1')
                    return [op(x, right.A) for x in left.A]
                elif len(left) == len(right):
                    #print('== NxN')
                    return [op(x, y) for (x, y) in zip(left.A, right.A)]
                else:
                    raise ValueError(
                        'length of lists to == must be same length')
        elif argcheck.isscalar(right) or (isinstance(right, np.ndarray)
                                          and right.shape == left.shape):
            # class by matrix
            if len(left) == 1:
                return op(left.A, right)
            else:
                return [op(x, right) for x in left.A]
Пример #8
0
    def __truediv__(left, right):
        """
        Overloaded ``/`` operator (superclass method)

        :arg left: left multiplicand
        :arg right: right multiplicand
        :return: product
        :raises ValueError: for incompatible arguments
        :return: matrix
        :rtype: numpy ndarray

        Pose composition or scaling:

        - ``X / Y`` compounds the poses ``X`` and ``Y.inv()``
        - ``X / s`` performs elementwise multiplication of the elements of ``X`` by ``s``

        ==============   ==============   ===========  =========================
                   Multiplicands                   Quotient
        -------------------------------   --------------------------------------
            left             right            type           operation
        ==============   ==============   ===========  =========================
        Pose             Pose             Pose         matrix product by inverse
        Pose             scalar           NxN matrix   element-wise division
        ==============   ==============   ===========  =========================

        Notes:

        #. Pose is ``SO2``, ``SE2``, ``SO3`` or ``SE3`` instance
        #. N is 2 for ``SO2``, ``SE2``; 3 for ``SO3`` or ``SE3``
        #. scalar multiplication is not a group operation so the result will 
           be a matrix
        #. Any other input combinations result in a ValueError.

        For pose composition the ``left`` and ``right`` operands may be a sequence

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``prod = left * right.inv()``
         1          M             M    ``prod[i] = left * right[i].inv()``
         N          1             M    ``prod[i] = left[i] * right.inv()``
         M          M             M    ``prod[i] = left[i] * right[i].inv()``
        =========   ==========   ====  ================================

        """
        if isinstance(left, right.__class__):
            return left.__class__(left._op2(right.inv(), lambda x, y: x @ y),
                                  check=False)
        elif argcheck.isscalar(right):
            return left._op2(right, lambda x, y: x / y)
        else:
            raise ValueError('bad operands')
Пример #9
0
    def __mul__(left, right):
        """
        multiply quaternion

        :arg left: left multiplicand
        :type left: Quaternion
        :arg right: right multiplicand
        :type left: Quaternion, UnitQuaternion, float
        :return: product
        :rtype: Quaternion
        :raises: ValueError

        ==============   ==============   ==============  ================
                   Multiplicands                   Product
        -------------------------------   --------------------------------
            left             right            type           result
        ==============   ==============   ==============  ================
        Quaternion       Quaternion       Quaternion      Hamilton product
        Quaternion       UnitQuaternion   Quaternion      Hamilton product
        Quaternion       scalar           Quaternion      scalar product
        ==============   ==============   ==============  ================

        Any other input combinations result in a ValueError.

        Note that left and right can have a length greater than 1 in which case:

        ====   =====   ====  ================================
        left   right   len     operation
        ====   =====   ====  ================================
         1      1       1    ``prod = left * right``
         1      N       N    ``prod[i] = left * right[i]``
         N      1       N    ``prod[i] = left[i] * right``
         N      N       N    ``prod[i] = left[i] * right[i]``
         N      M       -    ``ValueError``
        ====   =====   ====  ================================

        """
        if isinstance(right, left.__class__):
            # quaternion * [unit]quaternion case
            return Quaternion(left._op2(right, lambda x, y: quat.qqmul(x, y)))

        elif argcheck.isscalar(right):
            # quaternion * scalar case
            #print('scalar * quat')
            return Quaternion([right * q._A for q in left])

        else:
            raise ValueError('operands to * are of different types')

        return left._op2(right, lambda x, y: x @ y)
Пример #10
0
    def __truediv__(left, right):  # pylint: disable=no-self-argument
        """
        Overloaded ``/`` operator (superclass method)

        :return: Product of right operand and inverse of left operand
        :rtype: pose instance or NumPy array
        :raises ValueError: for incompatible arguments

        Pose composition or scaling:

        - ``X / Y`` compounds the poses ``X`` and ``Y.inv()``
        - ``X / s`` performs elementwise multiplication of the elements of ``X`` by ``s``

        ==============   ==============   ===========  =========================
                   Multiplicands                   Quotient
        -------------------------------   --------------------------------------
            left             right            type           operation
        ==============   ==============   ===========  =========================
        Pose             Pose             Pose         matrix product by inverse
        Pose             scalar           NxN matrix   element-wise division
        ==============   ==============   ===========  =========================

        .. notes::

            #. Pose is ``SO2``, ``SE2``, ``SO3`` or ``SE3`` instance
            #. N is 2 for ``SO2``, ``SE2``; 3 for ``SO3`` or ``SE3``
            #. Scalar multiplication is not a group operation so the result will 
               be a matrix
            #. Any other input combinations result in a ValueError.

        For pose composition either or both operands may hold more than one value which
        results in the composition holding more than one value according to:

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``quo = left * right.inv()``
         1          M             M    ``quo[i] = left * right[i].inv()``
         N          1             M    ``quo[i] = left[i] * right.inv()``
         M          M             M    ``quo[i] = left[i] * right[i].inv()``
        =========   ==========   ====  ================================

        """
        if isinstance(left, right.__class__):
            return left.__class__(left._op2(right.inv(), lambda x, y: x @ y),
                                  check=False)
        elif argcheck.isscalar(right):
            return left._op2(right, lambda x, y: x / y)
        else:
            raise ValueError('bad operands')
Пример #11
0
 def _format(self, l, name, ignorevalue=0, indices=None):  # noqa  # pragma nocover
     v = getattr(self, name)
     s = None
     if v is None:
         return
     if isscalar(v) and v != ignorevalue:
         s = f"{name}={v}"
     elif isinstance(v, np.ndarray):
         if np.linalg.norm(v, ord=np.inf) > 0:
             if indices is not None:
                 flat = v.flatten()
                 v = np.r_[[flat[k] for k in indices]]
             s = f"{name}=[" + ", ".join([str(x) for x in v]) + "]"
     if s is not None:
         l.append(s)
Пример #12
0
    def _checkimage(self, im, mask):
        """
        Check image and mask for pixelswitch

        :param im: image, possibly a color vector or identifier
        :type im: numpy array or scalar or string
        :param mask: mask
        :type mask: numpy array
        :return: out
        :rtype: Image instance

        - ``_checkimage(im, mask)`` is an image the same shape as ``mask``, and
          might be an image of all one color, depending on the value of ``im``
        """

        if isinstance(im, str):
            # image is a string color name
            col = color.colorname(im)
            if col is []:
                raise ValueError(im, 'unknown color')
            out = self.__class__(np.ones(mask.shape))
            out = out.colorise(col)

        elif argcheck.isscalar(im):
            # image is a  scalar, create a greyscale image the same size
            # as mask
            # TODO not certain if im.dtype works if im is scalar
            out = np.ones(mask.shape, dtype=im.dtype) * im

        elif im.ndim < 3 and max(im.shape) == 3:
            # or (3,) or (3,1)
            # image is a (1,3), create a color image the same size as mask
            out = self.__class__(np.ones(mask.shape, dtype=im.dtype))
            out = out.colorise(im)

        elif isinstance(im, self.__class__):
            # image class, check dimensions: (NOTE: im.size, not im.shape)
            # here, we are assuming mask is a 2D matrix
            if not np.any(im.size == mask.shape):
                raise ValueError(
                    im, 'input image size does not confirm with mask')
            out = im.image
        else:
            # actual image, check the dimensions
            if not np.any(im.shape == mask.shape):
                raise ValueError(
                    im, 'input image sizes (im or mask) do not conform')
        return out
Пример #13
0
    def __init__(self, s: Any = None, v=None, check=True, norm=True):
        """
        A zero quaternion is one for which M{s^2+vx^2+vy^2+vz^2 = 1}.
        A quaternion can be considered as a rotation about a vector in space where
        q = cos (theta/2) sin(theta/2) <vx vy vz>
        where <vx vy vz> is a unit vector.
        :param s: scalar
        :param v: vector
        """
        super().__init__()

        if s is None and v is None:
            self.data = [np.array([0, 0, 0, 0])]

        elif argcheck.isscalar(s) and argcheck.isvector(v, 3):
            self.data = [np.r_[s, argcheck.getvector(v)]]

        elif argcheck.isvector(s, 4):
            self.data = [argcheck.getvector(s)]

        elif isinstance(s, list):
            if isinstance(s[0], np.ndarray):
                if check:
                    assert argcheck.isvectorlist(
                        s, 4), 'list must comprise 4-vectors'
                self.data = s
            elif isinstance(s[0], self.__class__):
                # possibly a list of objects of same type
                assert all(map(lambda x: isinstance(x, self.__class__),
                               s)), 'all elements of list must have same type'
                self.data = [x._A for x in s]
            else:
                raise ValueError('incorrect list')

        elif isinstance(s, np.ndarray) and s.shape[1] == 4:
            self.data = [x for x in s]

        elif isinstance(s, Quaternion):
            self.data = s.data

        else:
            raise ValueError('bad argument to Quaternion constructor')
Пример #14
0
    def __rmul__(right, left):  # pylint: disable=no-self-argument
        """
        Overloaded ``*`` operator (superclass method)

        :return: Product of two operands
        :rtype: pose instance
        :raises NotImplemented: for incompatible arguments

        Left-multiplication by a scalar

        - ``s * X`` performs elementwise multiplication of the elements of ``X`` by ``s``

        Notes:

        #. For other left-operands return ``NotImplemented``.  Other classes
          such as ``Plucker`` and ``Twist`` implement left-multiplication by
          an ``SE3`` using their own ``__rmul__`` methods.

        """
        if argcheck.isscalar(left):
            return right.__mul__(left)
        else:
            return NotImplemented
Пример #15
0
    def __rmul__(right, left):
        """
        Overloaded ``*`` operator (superclass method)

        :arg left: left multiplicand
        :arg right: right multiplicand
        :return: product
        :raises: NotImplemented

        Left-multiplication by a scalar

        - ``s * X`` performs elementwise multiplication of the elements of ``X`` by ``s``

        Notes:

        #. For other left-operands return ``NotImplemented``.  Other classes
          such as ``Plucker`` and ``Twist`` implement left-multiplication by
          an ``SE33`` using their own ``__rmul__`` methods.

        """
        if argcheck.isscalar(left):
            return right.__mul__(left)
        else:
            return NotImplemented
Пример #16
0
    def __init__(self, s: Any = None, v=None, norm=True, check=True):
        """
        Construct a UnitQuaternion object

        :arg norm: explicitly normalize the quaternion [default True]
        :type norm: bool
        :arg check: explicitly check dimension of passed lists [default True]
        :type check: bool
        :return: new unit uaternion
        :rtype: UnitQuaternion
        :raises: ValueError

        Single element quaternion:

        - ``UnitQuaternion()`` constructs the identity quaternion 1<0,0,0>
        - ``UnitQuaternion(s, v)`` constructs a unit quaternion with specified
          real ``s`` and ``v`` vector parts. ``v`` is a 3-vector given as a
          list, tuple, numpy.ndarray
        - ``UnitQuaternion(v)`` constructs a unit quaternion with specified
          elements from ``v`` which is a 4-vector given as a list, tuple, numpy.ndarray
        - ``UnitQuaternion(R)`` constructs a unit quaternion from an orthonormal
          rotation matrix given as a 3x3 numpy.ndarray. If ``check`` is True
          test the matrix for orthogonality.
        - ``UnitQuaternion(X)`` constructs a unit quaternion from the rotational
          part of ``X`` which is SO3 or SE3 instance.  If len(X) > 1 then
          the resulting unit quaternion is of the same length.

        Multi-element quaternion:

        - ``UnitQuaternion(V)`` constructs a unit quaternion list with specified
          elements from ``V`` which is an Nx4 numpy.ndarray, each row is a
          quaternion.  If ``norm`` is True explicitly normalize each row.
        - ``UnitQuaternion(L)`` constructs a unit quaternion list from a list
          of 4-element numpy.ndarrays.  If ``check`` is True test each element
          of the list is a 4-vector. If ``norm`` is True explicitly normalize
          each vector.
        """
        super().__init__()

        if s is None and v is None:
            self.data = [quat.eye()]

        elif argcheck.isscalar(s) and argcheck.isvector(v, 3):
            # UnitQuaternion(s, v)   s is scalar, v is 3-vector
            q = np.r_[s, argcheck.getvector(v)]
            if norm:
                q = quat.unit(q)
            self.data = [q]

        elif argcheck.isvector(s, 4):
            # UnitQuaternion(q)   q is 4-vector
            q = argcheck.getvector(s)
            if norm:
                s = quat.unit(s)
            self.data = [s]

        elif isinstance(s, list):
            # UnitQuaternion(list)
            if isinstance(s[0], np.ndarray):
                # list of 4-vectors
                if check:
                    assert argcheck.isvectorlist(
                        s, 4), 'list must comprise 4-vectors'
                self.data = s
            elif isinstance(s[0], p3d.SO3):
                # list of SO3/SE3
                self.data = [quat.r2q(x.R) for x in s]

            elif isinstance(s[0], self.__class__):
                # possibly a list of objects of same type
                assert all(map(lambda x: isinstance(x, type(self)),
                               s)), 'all elements of list must have same type'
                self.data = [x._A for x in s]
            else:
                raise ValueError('incorrect list')

        elif isinstance(s, p3d.SO3):
            # UnitQuaternion(x) x is SO3 or SE3
            self.data = [quat.r2q(x.R) for x in s]

        elif isinstance(s, np.ndarray) and tr.isrot(s, check=check):
            # UnitQuaternion(R) R is 3x3 rotation matrix
            self.data = [quat.r2q(s)]

        elif isinstance(s, np.ndarray) and tr.ishom(s, check=check):
            # UnitQuaternion(T) T is 4x4 homogeneous transformation matrix
            self.data = [quat.r2q(tr.t2r(s))]

        elif isinstance(s, np.ndarray) and s.shape[1] == 4:
            if norm:
                self.data = [quat.qnorm(x) for x in s]
            else:
                self.data = [x for x in s]

        elif isinstance(s, UnitQuaternion):
            # UnitQuaternion(Q) Q is a UnitQuaternion instance, clone it
            self.data = s.data

        else:
            raise ValueError('bad argument to UnitQuaternion constructor')
Пример #17
0
    def __init__(self, x=None, y=None, theta=None, *, unit='rad', check=True):
        """
        Construct new SE(2) object

        :param unit: angular units 'deg' or 'rad' [default] if applicable :type
        unit: str, optional :param check: check for valid SE(2) elements if
        applicable, default to True :type check: bool :return: homogeneous
        rigid-body transformation matrix :rtype: SE2 instance

        - ``SE2()`` is an SE2 instance representing a null motion -- the
          identity matrix
        - ``SE2(θ)`` is an SE2 instance representing a pure rotation of
          ``θ`` radians
        - ``SE2(θ, unit='deg')`` as above but ``θ`` in degrees
        - ``SE2(x, y)`` is an SE2 instance representing a pure translation of
          (``x``, ``y``)
        - ``SE2(t)`` is an SE2 instance representing a pure translation of
          (``x``, ``y``) where``t``=[x,y] is a 2-element array_like
        - ``SE2(x, y, θ)`` is an SE2 instance representing a translation of
          (``x``, ``y``) and a rotation of ``θ`` radians
        - ``SE2(x, y, θ, unit='deg')`` as above but ``θ`` in degrees
        - ``SE2(t)`` where ``t``=[x,y] is a 2-element array_like, is an SE2
          instance representing a pure translation of (``x``, ``y``)
        - ``SE2(q)`` where ``q``=[x,y,θ] is a 3-element array_like, is an SE2
          instance representing a translation of (``x``, ``y``) and a rotation
          of ``θ`` radians
        - ``SE2(t, unit='deg')`` as above but ``θ`` in degrees
        - ``SE2(T)`` is an SE2 instance with rigid-body motion described by the
          SE(2) matrix T which is a 3x3 numpy array.  If ``check`` is ``True``
          check the matrix belongs to SE(2).
        - ``SE2([T1, T2, ... TN])`` is an SE2 instance containing a sequence of
          N rigid-body motions, each described by an SE(2) matrix Ti which is a
          3x3 numpy array. If ``check`` is ``True`` then check each matrix
          belongs to SE(2).
        - ``SE2([X1, X2, ... XN])`` is an SE2 instance containing a sequence of
          N rigid-body motions, where each Xi is an SE2 instance.

        """
        if y is None and theta is None:
            # just one argument passed

            if super().arghandler(x, check=check):
                return

            elif argcheck.isscalar(x):
                self.data = [tr.trot2(x, unit=unit)]
            elif len(x) == 2:
                # SE2([x,y])
                self.data = [tr.transl2(x)]
            elif len(x) == 3:
                # SE2([x,y,theta])
                self.data = [tr.trot2(x[2], t=x[:2], unit=unit)]

            else:
                raise ValueError('bad argument to constructor')

        elif x is not None:

            if y is not None and theta is None:
                # SE2(x, y)
                self.data = [tr.transl2(x, y)]

            elif y is not None and theta is not None:
                # SE2(x, y, theta)
                self.data = [tr.trot2(theta, t=[x, y], unit=unit)]

        else:
            raise ValueError('bad arguments to constructor')
Пример #18
0
    def __mul__(left, right):
        """
        Multiply unit quaternion

        :arg left: left multiplicand
        :type left: UnitQuaternion
        :arg right: right multiplicand
        :type left: UnitQuaternion, Quaternion, 3-vector, 3xN array, float
        :return: product
        :rtype: Quaternion, UnitQuaternion
        :raises: ValueError

        ==============   ==============   ==============  ================
                   Multiplicands                   Product
        -------------------------------   --------------------------------
            left             right            type           result
        ==============   ==============   ==============  ================
        UnitQuaternion   Quaternion       Quaternion      Hamilton product
        UnitQuaternion   UnitQuaternion   UnitQuaternion  Hamilton product
        UnitQuaternion   scalar           Quaternion      scalar product
        UnitQuaternion   3-vector         3-vector        vector rotation
        UnitQuaternion   3xN array        3xN array       vector rotations
        ==============   ==============   ==============  ================

        Any other input combinations result in a ValueError.

        Note that left and right can have a length greater than 1 in which case:

        ====   =====   ====  ================================
        left   right   len     operation
        ====   =====   ====  ================================
         1      1       1    ``prod = left * right``
         1      N       N    ``prod[i] = left * right[i]``
         N      1       N    ``prod[i] = left[i] * right``
         N      N       N    ``prod[i] = left[i] * right[i]``
         N      M       -    ``ValueError``
        ====   =====   ====  ================================

        A scalar of length N is a list, tuple or numpy array.
        A 3-vector of length N is a 3xN numpy array, where each column is a 3-vector.

        :seealso: :func:`~spatialmath.Quaternion.__mul__`
        """
        if isinstance(left, right.__class__):
            # quaternion * quaternion case (same class)
            return right.__class__(
                left._op2(right, lambda x, y: quat.qqmul(x, y)))

        elif argcheck.isscalar(right):
            # quaternion * scalar case
            #print('scalar * quat')
            return Quaternion([right * q._A for q in left])

        elif isinstance(right, (list, tuple, np.ndarray)):
            #print('*: pose x array')
            if argcheck.isvector(right, 3):
                v = argcheck.getvector(right)
                if len(left) == 1:
                    # pose x vector
                    #print('*: pose x vector')
                    return quat.qvmul(left._A, argcheck.getvector(right, 3))

                elif len(left) > 1 and argcheck.isvector(right, 3):
                    # pose array x vector
                    #print('*: pose array x vector')
                    return np.array([tr.qvmul(x, v) for x in left._A]).T

            elif len(left) == 1 and isinstance(
                    right, np.ndarray) and right.shape[0] == 3:
                return np.array([tr.qvmul(left._A, x) for x in right.T]).T
            else:
                raise ValueError('bad operands')
        else:
            raise ValueError(
                'UnitQuaternion: operands to * are of different types')

        return left._op2(right, lambda x, y: x @ y)

        return right.__mul__(left)
    def smooth(self, sigma, hw=None, optmode='same', optboundary='fill'):
        """
        Smooth image

        :param sigma: standard deviation of the Gaussian kernel
        :type sigma: float
        :param hw: half-width of the kernel
        :type hw: float
        :param opt: convolution options np.convolve (see below)
        :type opt: string
        :return out: Image with smoothed image pixels
        :rtype: Image instance

        - ``IM.smooth(sigma)`` is the image after convolution with a Gaussian
          kernel of standard deviation ``sigma``

        - ``IM.smooth(sigma, hw)`` as above with kernel half-width ``hw``.

        - ``IM.smooth(sigma, opt)`` as above with options passed to np.convolve

        :options:

            - 'full'    returns the full 2-D convolution (default)
            - 'same'    returns OUT the same size as IM
            - 'valid'   returns  the valid pixels only, those where the kernel
              does not exceed the bounds of the image.

        Example:

        .. runblock:: pycon

        .. note::

            - By default (option 'full') the returned image is larger than the
              passed image.
            - Smooths all planes of the input image.
            - The Gaussian kernel has a unit volume.
            - If input image is integer it is converted to float, convolved,
              then converted back to integer.
        """

        if not argcheck.isscalar(sigma):
            raise ValueError(sigma, 'sigma must be a scalar')

        modeopt = {
            'full': 'full',
            'valid': 'valid',
            'same': 'same'
        }
        if optmode not in modeopt:
            raise ValueError(optmode, 'opt is not a valid option')

        boundaryopt = {
            'fill': 'fill',
            'wrap': 'wrap',
            'reflect': 'symm'
        }
        if optboundary not in boundaryopt:
            raise ValueError(optboundary, 'opt is not a valid option')

        is_int = False
        if np.issubdtype(self.dtype, np.integer):
            is_int = True
            img = self.float()
        else:
            img = self

        # make the smoothing kernel
        K = self.kgauss(sigma, hw)

        if img.iscolor:
            # could replace this with a nested list comprehension

            ims = []
            for im in img:
                o = np.dstack([signal.convolve2d(np.squeeze(im.image[:, :, i]),
                                                 K,
                                                 mode=modeopt[optmode],
                                                 boundary=boundaryopt[
                                                     optboundary])
                              for i in range(im.numchannels)])
                ims.append(o)

        elif not img.iscolor:
            ims = []
            for im in img:
                ims.append(signal.convolve2d(im.image,
                                             K,
                                             mode=modeopt[optmode],
                                             boundary=boundaryopt[
                                                 optboundary]))

        else:
            raise ValueError(self.iscolor, 'bad value for iscolor')

        if is_int:
            return self.__class__(ims).int()
        else:
            return self.__class__(ims)
    def pyramid(self, sigma=1, N=None):
        """
        Pyramidal image decomposition

        :param sigma: standard deviation of Gaussian kernel
        :type sigma: float
        :param N: number of pyramid levels to be computed
        :type N: int
        :return pyrimlist: list of Images for each pyramid level computed
        :rtype pyrimlist: list

        - ``IM.pyramid()`` is a pyramid decomposition of image using Gaussian
          smoothing with standard deviation of 1. The return is a list array of
          images each one having dimensions half that of the previous image.
          The pyramid is computed down to a non-halvable image size.

        - ``IM.pyramid(sigma)`` as above but the Gaussian standard deviation is
          ``sigma``.

        - ``IM.pyramid(sigma, N)`` as above but only ``N`` levels of the
          pyramid are computed.

        Example:

        .. runblock:: pycon

        .. note::

            - Converts a color image to greyscale.
            - Works for greyscale images only.
        """

        # check inputs, greyscale only
        im = self.mono()

        if not argcheck.isscalar(sigma):
            raise ValueError(sigma, 'sigma must be a scalar')

        if N is None:
            N = max(im.shape)
        else:
            if (not argcheck.isscalar(N)) and (N >= 0) and \
               (N <= max(im.shape)):
                raise ValueError(N, 'N must be a scalar and \
                    0 <= N <= max(im.shape)')

        # TODO options to accept different border types,
        # note that the Matlab implementation is hard-coded to 'same'

        # return cv.buildPyramid(im, N, borderType=cv.BORDER_REPLICATE)
        # Python version does not seem to be implemented

        # list comprehension approach
        # TODO pyr = [cv.pyrdown(inputs(i)) for i in range(N) if conditional]

        impyr = im.image
        pyr = [impyr]
        for i in range(N):
            if impyr.shape[0] == 1 or impyr.shape[1] == 1:
                break
            impyr = cv.pyrDown(impyr, borderType=cv.BORDER_REPLICATE)
            pyr.append(impyr)

        # output list of Image objects
        pyrimlist = [self.__class__(p) for p in pyr]
        return pyrimlist
Пример #21
0
    def thresh(self, t=None, opt='binary'):
        """
        Image threshold

        :param t: threshold
        :type t: scalar
        :param opt: threshold option (see below)
        :type opt: string
        :return imt: Image thresholded binary image
        :rtype imt: Image instance
        :return: threshold if opt is otsu or triangle
        :rtype: list of scalars

        - ``IM.thresh()`` uses Otsu's method for thresholding a greyscale
          image.

        - ``IM.thresh(t)`` as above but the threshold ``t`` is specified.

        - ``IM.thresh(t, opt)`` as above but the threshold option is specified.
          See opencv threshold types for threshold options
          https://docs.opencv.org/4.2.0/d7/d1b/group__imgproc__
          misc.html#gaa9e58d2860d4afa658ef70a9b1115576

        Example:

        .. runblock:: pycon

        :options:

            - 'binary' # TODO consider the LaTeX formatting of equations
            - 'binary_inv'
            - 'trunc'
            - 'tozero'
            - 'tozero_inv'
            - 'otsu'
            - 'triangle'

        .. note::

            - Converts a color image to greyscale.
            - For a uint8 class image the slider range is 0 to 255.
            - For a floating point class image the slider range is 0 to 1.0
        """

        # dictionary of threshold options from OpenCV
        threshopt = {
            'binary': cv.THRESH_BINARY,
            'binary_inv': cv.THRESH_BINARY_INV,
            'trunc': cv.THRESH_TRUNC,
            'tozero': cv.THRESH_TOZERO,
            'tozero_inv': cv.THRESH_TOZERO_INV,
            'otsu': cv.THRESH_OTSU,
            'triangle': cv.THRESH_TRIANGLE
        }

        if t is not None:
            if not argcheck.isscalar(t):
                raise ValueError(t, 't must be a scalar')
        else:
            # if no threshold is specified, we assume to use Otsu's method
            print('No threshold specified. Applying Otsu' 's method.')
            opt = 'otsu'

        # ensure mono images
        if self.iscolor:
            imono = self.mono()
        else:
            imono = self

        out_t = []
        out_imt = []
        for im in [img.image for img in imono]:

            # for image int class, maxval = max of int class
            # for image float class, maxval = 1
            if np.issubdtype(im.dtype, np.integer):
                maxval = np.iinfo(im.dtype).max
            else:
                # float image, [0, 1] range
                maxval = 1.0

            threshvalue, imt = cv.threshold(im, t, maxval, threshopt[opt])
            out_t.append(threshvalue)
            out_imt.append(imt)

        if opt == 'otsu' or opt == 'triangle':
            return self.__class__(out_imt), out_t
        else:
            return self.__class__(out_imt)
Пример #22
0
    def binop(self, right, op, op2=None, list1=True):
        """
        Perform binary operation
        
        :param left: left operand
        :type left: BasePoseList subclass
        :param right: right operand
        :type right: BasePoseList subclass, scalar or array
        :param op: binary operation
        :type op: callable
        :param op2: binary operation
        :type op2: callable
        :param list1: return single array as a list, default True
        :type list1: bool
        :raises ValueError: arguments are not compatible
        :return: list of values
        :rtype: list

        The is a helper method for implementing binary operation with overloaded
        operators such as ``X * Y`` where ``X`` and ``Y`` are both subclasses
        of ``BasePoseList``.  Each operand has a list of one or more
        values and this methods computes a list of result values according to:

        =========   ==========   ====  ===================================
              Inputs                    Output
        ----------------------   -----------------------------------------
        len(left)   len(right)   len     operation
        =========   ==========   ====  ===================================
         1          1             1    ``ret = op(left, right)``
         1          M             M    ``ret[i] = op(left, right[i])``
         M          1             M    ``ret[i] = op(left[i], right)``
         M          M             M    ``ret[i] = op(left[i], right[i])``
        =========   ==========   ====  ===================================

        The arguments to ``op`` are the internal numeric values, ie. as returned
        by the ``._A`` property.

        The result is always a list, except for the first case above and
        ``list1`` is ``False``.

        If the right operand is not a ``BasePoseList`` subclass, but is a numeric
        scalar or array then then ``op2`` is invoked

        For example::

            X._binop(Y, lambda x, y: x + y)

        =========   ====  ===================================
          Input                    Output
        ---------   -----------------------------------------
        len(left)   len     operation
        =========   ====  ===================================
         1           1    ``ret = op2(left, right)``
         M           M    ``ret[i] = op2(left[i], right)``
        =========   ====  ===================================

        There is no check on the shape of ``right`` if it is an array.
        The result is always a list, except for the first case above and
        ``list1`` is ``False``.
        """
        left = self

        # class * class
        if len(left) == 1:
            # singleton *
            if argcheck.isscalar(right):
                if list1:
                    return [op(left._A, right)]
                else:
                    return op(left.A, right)
            elif len(right) == 1:
                # singleton * singleton
                if list1:
                    return [op(left._A, right._A)]
                else:
                    return op(left.A, right.A)
            else:
                # singleton * non-singleton
                return [op(left.A, x) for x in right.A]
        else:
            # non-singleton *
            if argcheck.isscalar(right):
                return [op(x, right) for x in left.A]
            elif len(right) == 1:
                # non-singleton * singleton
                return [op(x, right.A) for x in left.A]
            elif len(left) == len(right):
                # non-singleton * non-singleton
                return [op(x, y) for (x, y) in zip(left.A, right.A)]
            else:
                raise ValueError('length of lists to == must be same length')
Пример #23
0
    def fdyn(self,
             T,
             q0,
             torqfun=None,
             targs=None,
             qd0=None,
             solver='RK45',
             sargs=None,
             dt=None,
             progress=False):
        """
        Integrate forward dynamics

        :param T: integration time
        :type T: float
        :param q0: initial joint coordinates
        :type q0: array_like
        :param qd0: initial joint velocities, assumed zero if not given
        :type qd0: array_like
        :param torqfun: a function that computes torque as a function of time
        and/or state
        :type torqfun: callable
        :param targs: argumments passed to ``torqfun``
        :type targs: dict
        :type solver: name of scipy solver to use, RK45 is the default
        :param solver: str
        :type sargs: arguments passed to the solver
        :param sargs: dict
        :type dt: time step for results
        :param dt: float
        :param progress: show progress bar, default False
        :type progress: bool

        :return: robot trajectory
        :rtype: namedtuple

        - ``tg = R.fdyn(T, q)`` integrates the dynamics of the robot with zero
          input torques over the time  interval 0 to ``T`` and returns the
          trajectory as a namedtuple with elements:

            - ``t`` the time vector (M,)
            - ``q`` the joint coordinates (M,n)
            - ``qd`` the joint velocities (M,n)

        - ``tg = R.fdyn(T, q, torqfun)`` as above but the torque applied to the
          joints is given by the provided function::

                tau = function(robot, t, q, qd, **args)

          where the inputs are:

            - the robot object
            - current time
            - current joint coordinates (n,)
            - current joint velocity (n,)
            - args, optional keyword arguments can be specified, these are
              passed in from the ``targs`` kewyword argument.

          The function must return a Numpy array (n,) of joint forces/torques.

        Examples:

         #. to apply zero joint torque to the robot without Coulomb
            friction::

                def myfunc(robot, t, q, qd):
                    return np.zeros((robot.n,))

                tg = robot.nofriction().fdyn(5, q0, myfunc)

                plt.figure()
                plt.plot(tg.t, tg.q)
                plt.show()

            We could also use a lambda function::

                tg = robot.nofriction().fdyn(
                    5, q0, lambda r, t, q, qd: np.zeros((r.n,)))

         #. the robot is controlled by a PD controller. We first define a
            function to compute the control which has additional parameters for
            the setpoint and control gains (qstar, P, D)::

                def myfunc(robot, t, q, qd, qstar, P, D):
                    return (qstar - q) * P + qd * D  # P, D are (6,)

                targs = {'qstar': VALUE, 'P': VALUE, 'D': VALUE}
                tg = robot.fdyn(10, q0, myfunc, targs=targs) )

        Many integrators have variable step length which is problematic if we
        want to animate the result.  If ``dt`` is specified then the solver
        results are interpolated in time steps of ``dt``.

        :notes:

        - This function performs poorly with non-linear joint friction, such as
          Coulomb friction.  The R.nofriction() method can be used to set this
          friction to zero.
        - If the function is not specified then zero force/torque is
          applied to the manipulator joints.
        - Interpolation is performed using `ScipY integrate.ode
          <https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html>`
          - The SciPy RK45 integrator is used by default
        - Interpolation is performed using `SciPy interp1
          <https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html>`

        :seealso: :func:`DHRobot.accel`, :func:`DHRobot.nofriction`,
            :func:`DHRobot.rne`.
        """

        n = self.n

        if not isscalar(T):
            raise ValueError('T must be a scalar')
        q0 = getvector(q0, n)
        if qd0 is None:
            qd0 = np.zeros((n, ))
        else:
            qd0 = getvector(qd0, n)
        if torqfun is not None:
            if not callable(torqfun):
                raise ValueError('torque function must be callable')
        if sargs is None:
            sargs = {}
        if targs is None:
            targs = {}

        # concatenate q and qd into the initial state vector
        x0 = np.r_[q0, qd0]

        # get user specified integrator
        scipy_integrator = integrate.__dict__[solver]

        integrator = scipy_integrator(
            lambda t, y: self._fdyn(t, y, torqfun, targs),
            t0=0.0,
            y0=x0,
            t_bound=T,
            **sargs)

        # initialize list of time and states
        tlist = [0]
        xlist = [np.r_[q0, qd0]]

        if progress:
            _printProgressBar(0,
                              prefix='Progress:',
                              suffix='complete',
                              length=60)

        while integrator.status == 'running':

            # step the integrator, calls _fdyn multiple times
            integrator.step()

            if integrator.status == 'failed':
                raise RuntimeError('integration completed with failed status ')

            # stash the results
            tlist.append(integrator.t)
            xlist.append(integrator.y)

            # update the progress bar
            if progress:
                _printProgressBar(integrator.t / T,
                                  prefix='Progress:',
                                  suffix='complete',
                                  length=60)

        # cleanup the progress bar
        if progress:
            print('\r' + ' ' * 90 + '\r')

        tarray = np.array(tlist)
        xarray = np.array(xlist)

        if dt is not None:
            # interpolate data to equal time steps of dt
            interp = interpolate.interp1d(tarray, xarray, axis=0)

            tnew = np.arange(0, T, dt)
            xnew = interp(tnew)
            return namedtuple('fdyn', 't q qd')(tnew, xnew[:, :n], xnew[:, n:])
        else:
            return namedtuple('fdyn', 't q qd')(tarray, xarray[:, :n],
                                                xarray[:, n:])
Пример #24
0
 def B(self, B_new):
     if isscalar(B_new):
         self._B = B_new
     else:
         raise TypeError("B must be a scalar")
Пример #25
0
    def __mul__(left, right):
        """
        Overloaded ``*`` operator (superclass method)

        :arg left: left multiplicand
        :arg right: right multiplicand
        :return: product
        :raises: ValueError

        Pose composition, scaling or vector transformation:

        - ``X * Y`` compounds the poses ``X`` and ``Y``
        - ``X * s`` performs elementwise multiplication of the elements of ``X`` by ``s``
        - ``s * X`` performs elementwise multiplication of the elements of ``X`` by ``s``
        - ``X * v`` linear transform of the vector ``v``

        ==============   ==============   ===========  ======================
                   Multiplicands                   Product
        -------------------------------   -----------------------------------
            left             right            type           operation
        ==============   ==============   ===========  ======================
        Pose             Pose             Pose         matrix product
        Pose             scalar           NxN matrix   element-wise product
        scalar           Pose             NxN matrix   element-wise product
        Pose             N-vector         N-vector     vector transform
        Pose             NxM matrix       NxM matrix   transform each column
        ==============   ==============   ===========  ======================

        Notes:

        #. Pose is ``SO2``, ``SE2``, ``SO3`` or ``SE3`` instance
        #. N is 2 for ``SO2``, ``SE2``; 3 for ``SO3`` or ``SE3``
        #. scalar x Pose is handled by ``__rmul__``
        #. scalar multiplication is commutative but the result is not a group
           operation so the result will be a matrix
        #. Any other input combinations result in a ValueError.

        For pose composition the ``left`` and ``right`` operands may be a sequence

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``prod = left * right``
         1          M             M    ``prod[i] = left * right[i]``
         N          1             M    ``prod[i] = left[i] * right``
         M          M             M    ``prod[i] = left[i] * right[i]``
        =========   ==========   ====  ================================

        For vector transformation there are three cases

        =========  ===========  =====  ==========================
              Multiplicands             Product
        ----------------------  ---------------------------------
        len(left)  right.shape  shape  operation
        =========  ===========  =====  ==========================
        1          (N,)         (N,)   vector transformation
        M          (N,)         (N,M)  vector transformations
        1          (N,M)        (N,M)  column transformation
        =========  ===========  =====  ==========================

        Notes:

        #. for the ``SE2`` and ``SE3`` case the vectors are converted to homogeneous
           form, transformed, then converted back to Euclidean form.

        """
        if isinstance(left, right.__class__):
            #print('*: pose x pose')
            return left.__class__(left._op2(right, lambda x, y: x @ y),
                                  check=False)

        elif isinstance(right, (list, tuple, np.ndarray)):
            #print('*: pose x array')
            if len(left) == 1 and argcheck.isvector(right, left.N):
                # pose x vector
                #print('*: pose x vector')
                v = argcheck.getvector(right, out='col')
                if left.isSE:
                    # SE(n) x vector
                    return tr.h2e(left.A @ tr.e2h(v))
                else:
                    # SO(n) x vector
                    return left.A @ v

            elif len(left) > 1 and argcheck.isvector(right, left.N):
                # pose array x vector
                #print('*: pose array x vector')
                v = argcheck.getvector(right)
                if left.isSE:
                    # SE(n) x vector
                    v = tr.e2h(v)
                    return np.array([tr.h2e(x @ v).flatten()
                                     for x in left.A]).T
                else:
                    # SO(n) x vector
                    return np.array([(x @ v).flatten() for x in left.A]).T

            elif len(left) == 1 and isinstance(
                    right,
                    np.ndarray) and left.isSO and right.shape[0] == left.N:
                # SO(n) x matrix
                return left.A @ right
            elif len(left) == 1 and isinstance(
                    right,
                    np.ndarray) and left.isSE and right.shape[0] == left.N:
                # SE(n) x matrix
                return tr.h2e(left.A @ tr.e2h(right))
            elif isinstance(right, np.ndarray) and left.isSO and right.shape[
                    0] == left.N and len(left) == right.shape[1]:
                # SO(n) x matrix
                return np.c_[[x.A @ y for x, y in zip(right, left.T)]].T
            elif isinstance(right, np.ndarray) and left.isSE and right.shape[
                    0] == left.N and len(left) == right.shape[1]:
                # SE(n) x matrix
                return np.c_[[
                    tr.h2e(x.A @ tr.e2h(y)) for x, y in zip(right, left.T)
                ]].T
            else:
                raise ValueError('bad operands')
        elif argcheck.isscalar(right):
            return left._op2(right, lambda x, y: x * y)
        else:
            return NotImplemented
Пример #26
0
    def __mul__(left, right):  # pylint: disable=no-self-argument
        """
        Overloaded ``*`` operator (superclass method)

        :return: Product of two operands
        :rtype: pose instance
        :raises NotImplemented: for incompatible arguments

        Pose composition, scaling or vector transformation:

        - ``X * Y`` compounds the poses ``X`` and ``Y``
        - ``X * s`` performs element-wise multiplication of the elements of ``X`` by ``s``
        - ``s * X`` performs element-wise multiplication of the elements of ``X`` by ``s``
        - ``X * v`` linear transformation of the vector ``v`` where ``v`` is array-like

        ==============   ==============   ===========  ======================
                   Multiplicands                   Product
        -------------------------------   -----------------------------------
            left             right            type           operation
        ==============   ==============   ===========  ======================
        Pose             Pose             Pose         matrix product
        Pose             scalar           NxN matrix   element-wise product
        scalar           Pose             NxN matrix   element-wise product
        Pose             N-vector         N-vector     vector transform
        Pose             NxM matrix       NxM matrix   transform each column
        ==============   ==============   ===========  ======================

        .. note::

            #. Pose is an ``SO2``, ``SE2``, ``SO3`` or ``SE3`` instance
            #. N is 2 for ``SO2``, ``SE2``; 3 for ``SO3`` or ``SE3``
            #. Scalar x Pose is handled by __rmul__`
            #. Scalar multiplication is commutative but the result is not a group
               operation so the result will be a matrix
            #. Any other input combinations result in a ValueError.

        For pose composition either or both operands may hold more than one value which
        results in the composition holding more than one value according to:

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``prod = left * right``
         1          M             M    ``prod[i] = left * right[i]``
         N          1             M    ``prod[i] = left[i] * right``
         M          M             M    ``prod[i] = left[i] * right[i]``
        =========   ==========   ====  ================================

        Example::

            >>> SE3.Rx(pi/2) * SE3.Ry(pi/2)
            SE3(array([[0., 0., 1., 0.],
                    [1., 0., 0., 0.],
                    [0., 1., 0., 0.],
                    [0., 0., 0., 1.]]))
            >>> SE3.Rx(pi/2) * 2
            array([[ 2.0000000e+00,  0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
                   [ 0.0000000e+00,  1.2246468e-16, -2.0000000e+00,  0.0000000e+00],
                   [ 0.0000000e+00,  2.0000000e+00,  1.2246468e-16,  0.0000000e+00],
                   [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00,  2.0000000e+00]])

        For vector transformation there are three cases:

        =========  ===========  =====  ==========================
              Multiplicands             Product
        ----------------------  ---------------------------------
        len(left)  right.shape  shape  operation
        =========  ===========  =====  ==========================
        1          (N,)         (N,)   vector transformation
        M          (N,)         (N,M)  vector transformations
        1          (N,M)        (N,M)  column transformation
        =========  ===========  =====  ==========================

        .. note:: For the ``SE2`` and ``SE3`` case the vectors are converted to homogeneous
                  form, transformed, then converted back to Euclidean form.

        Example:: 

            >>> SE3.Rx(pi/2) * [0, 1, 0]
            array([0.000000e+00, 6.123234e-17, 1.000000e+00])
            >>> SE3.Rx(pi/2) * np.r_[0, 0, 1]
            array([ 0.000000e+00, -1.000000e+00,  6.123234e-17])
        """
        if isinstance(left, right.__class__):
            #print('*: pose x pose')
            return left.__class__(left._op2(right, lambda x, y: x @ y),
                                  check=False)

        elif isinstance(right, (list, tuple, np.ndarray)):
            #print('*: pose x array')
            if len(left) == 1 and argcheck.isvector(right, left.N):
                # pose x vector
                #print('*: pose x vector')
                v = argcheck.getvector(right, out='col')
                if left.isSE:
                    # SE(n) x vector
                    return tr.h2e(left.A @ tr.e2h(v))
                else:
                    # SO(n) x vector
                    return left.A @ v

            elif len(left) > 1 and argcheck.isvector(right, left.N):
                # pose array x vector
                #print('*: pose array x vector')
                v = argcheck.getvector(right)
                if left.isSE:
                    # SE(n) x vector
                    v = tr.e2h(v)
                    return np.array([tr.h2e(x @ v).flatten()
                                     for x in left.A]).T
                else:
                    # SO(n) x vector
                    return np.array([(x @ v).flatten() for x in left.A]).T

            elif len(left) == 1 and isinstance(
                    right,
                    np.ndarray) and left.isSO and right.shape[0] == left.N:
                # SO(n) x matrix
                return left.A @ right
            elif len(left) == 1 and isinstance(
                    right,
                    np.ndarray) and left.isSE and right.shape[0] == left.N:
                # SE(n) x matrix
                return tr.h2e(left.A @ tr.e2h(right))
            elif isinstance(right, np.ndarray) and left.isSO and right.shape[
                    0] == left.N and len(left) == right.shape[1]:
                # SO(n) x matrix
                return np.c_[[x.A @ y for x, y in zip(right, left.T)]].T
            elif isinstance(right, np.ndarray) and left.isSE and right.shape[
                    0] == left.N and len(left) == right.shape[1]:
                # SE(n) x matrix
                return np.c_[[
                    tr.h2e(x.A @ tr.e2h(y)) for x, y in zip(right, left.T)
                ]].T
            else:
                raise ValueError('bad operands')
        elif argcheck.isscalar(right):
            return left._op2(right, lambda x, y: x * y)
        else:
            return NotImplemented
Пример #27
0
 def __init__(self, s=None, v=None, norm=True, check=True):
     """
     Construct a UnitQuaternion object
     
     :arg norm: explicitly normalize the quaternion [default True]
     :type norm: bool
     :arg check: explicitly check dimension of passed lists [default True]
     :type check: bool
     :return: new unit uaternion
     :rtype: UnitQuaternion
     :raises: ValueError
     
     Single element quaternion:
         
     - ``UnitQuaternion()`` constructs the identity quaternion 1<0,0,0>
     - ``UnitQuaternion(s, v)`` constructs a unit quaternion with specified
       real ``s`` and ``v`` vector parts. ``v`` is a 3-vector given as a 
       list, tuple, numpy.ndarray
     - ``UnitQuaternion(v)`` constructs a unit quaternion with specified 
       elements from ``v`` which is a 4-vector given as a list, tuple, numpy.ndarray
     - ``UnitQuaternion(R)`` constructs a unit quaternion from an orthonormal
       rotation matrix given as a 3x3 numpy.ndarray. If ``check`` is True
       test the matrix for orthogonality.
     
     Multi-element quaternion:
         
     - ``UnitQuaternion(V)`` constructs a unit quaternion list with specified 
       elements from ``V`` which is an Nx4 numpy.ndarray, each row is a
       quaternion.  If ``norm`` is True explicitly normalize each row.
     - ``UnitQuaternion(L)`` constructs a unit quaternion list from a list
       of 4-element numpy.ndarrays.  If ``check`` is True test each element
       of the list is a 4-vector. If ``norm`` is True explicitly normalize 
       each vector.
     """
     
     if s is None and v is None:
         self.data = [ quat.eye() ]
         
     elif argcheck.isscalar(s) and argcheck.isvector(v,3):
         q = np.r_[ s, argcheck.getvector(v) ]
         if norm:
             q = quat.unit(q)
         self.data = [q]
         
     elif argcheck.isvector(s,4):
         print('uq constructor 4vec')
         q = argcheck.getvector(s)
         # if norm:
         #     q = quat.unit(q)
         print(q)
         self.data = [q]
         
     elif type(s) is list:
         if check:
             assert argcheck.isvectorlist(s,4), 'list must comprise 4-vectors'
         if norm:
             s = [quat.unit(q) for q in s]
         self.data = s
     
     elif isinstance(s, np.ndarray) and s.shape[1] == 4:
         if norm:
             self.data = [quat.norm(x) for x in s]
         else:
             self.data = [x for x in s]
         
     elif tr.isrot(s, check=check):
         self.data = [ quat.r2q(s) ]
         
     else:
         raise ValueError('bad argument to UnitQuaternion constructor')
Пример #28
0
    def __mul__(left, right):
        """
        Overloaded ``*`` operator
        
        :arg left: left multiplicand
        :arg right: right multiplicand
        :return: product
        :raises: ValueError

        Twist composition or scaling:
        
        - ``X * Y`` compounds the twists ``X`` and ``Y``
        - ``X * s`` performs elementwise multiplication of the elements of ``X`` by ``s``
        - ``s * X`` performs elementwise multiplication of the elements of ``X`` by ``s``

        ========  ====================  ===================  ========================
                   Multiplicands                   Product
        -------------------------------   -----------------------------------
        left       right                type                 operation
        ========  ====================  ===================  ========================
        Twist      Twist                Twist                product of exponentials
        Twist      scalar               Twist                element-wise product
        scalar     Twist                Twist                element-wise product
        Twist      SE3                  Twist                exponential x SE3
        Twist      SpatialVelocity      SpatialVelocity      adjoint product
        Twist      SpatialAcceleration  SpatialAcceleration  adjoint product
        Twist      SpatialForce         SpatialForce         adjoint product
        ========  ====================  ===================  ========================
        
        Notes:
            
        #. Pose is ``SO2``, ``SE2``, ``SO3`` or ``SE3`` instance
        #. N is 2 for ``SO2``, ``SE2``; 3 for ``SO3`` or ``SE3``
        #. scalar x Pose is handled by ``__rmul__``
        #. scalar multiplication is commutative but the result is not a group
           operation so the result will be a matrix
        #. Any other input combinations result in a ValueError.
        
        For pose composition the ``left`` and ``right`` operands may be a sequence

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``prod = left * right``
         1          M             M    ``prod[i] = left * right[i]``
         N          1             M    ``prod[i] = left[i] * right``
         M          M             M    ``prod[i] = left[i] * right[i]``
        =========   ==========   ====  ================================

        """
        # TODO TW * T compounds a twist with an SE2/3 transformation

        if isinstance(right, Twist):
            # twist composition
            return Twist(left.exp() * right.exp())
        elif isinstanve(right, SE3):
            return Twist(left.exp() * right)
        elif argcheck.isscalar(right):
            return Twist(left.S * right)
        elif isinstance(right, SpatialVelocity):
            return SpatialVelocity(a.Ad @ b.vw)
        elif isinstance(right, SpatialAcceleration):
            return SpatialAcceleration(a.Ad @ b.vw)
        elif isinstance(right, SpatialForce):
            return SpatialForce(a.Ad @ b.vw)
        else:
            raise ValueError('twist *, incorrect right operand')