Пример #1
0
    def I(self, I_new):  # noqa

        if ismatrix(I_new, (3, 3)):
            # 3x3 matrix passed
            if np.any(np.abs(I_new - I_new.T) > 1e-8):
                raise ValueError('3x3 matrix is not symmetric')

        elif isvector(I_new, 9):
            # 3x3 matrix passed as a 1d vector
            I_new = I_new.reshape(3, 3)
            if np.any(np.abs(I_new - I_new.T) > 1e-8):
                raise ValueError('3x3 matrix is not symmetric')

        elif isvector(I_new, 6):
            # 6-vector passed, moments and products of inertia,
            # [Ixx Iyy Izz Ixy Iyz Ixz]
            I_new = np.array([[I_new[0], I_new[3], I_new[5]],
                              [I_new[3], I_new[1], I_new[4]],
                              [I_new[5], I_new[4], I_new[2]]])

        elif isvector(I_new, 3):
            # 3-vector passed, moments of inertia [Ixx Iyy Izz]
            I_new = np.diag(I_new)

        else:
            raise ValueError('invalid shape passed: must be (3,3), (6,), (3,)')

        self._I = I_new
Пример #2
0
    def contains(self, x, tol=50 * _eps):
        """
        Test if points are on the line
        
        :param x: 3D point
        :type x: 3-element array_like, or numpy.ndarray, shape=(3,N)
        :param tol: Tolerance, defaults to 50*_eps
        :type tol: float, optional
        :raises ValueError: Bad argument
        :return: Whether point is on the line
        :rtype: bool or numpy.ndarray(N) of bool

        ``line.contains(X)`` is true if the point ``X`` lies on the line defined by
        the Plucker object self.
        
        If ``X`` is an array with 3 rows, the test is performed on every column and
        an array of booleans is returned.
        """
        if base.isvector(x, 3):
            x = base.getvector(x)
            return np.linalg.norm(np.cross(x - self.pp, self.w)) < tol
        elif base.ismatrix(x, (3, None)):
            return [
                np.linalg.norm(np.cross(_ - self.pp, self.w)) < tol
                for _ in x.T
            ]
        else:
            raise ValueError('bad argument')
Пример #3
0
    def __init__(self, value):
        """
        Create a new spatial vector (abstract superclass)

        :param value: Value of the

        - ``SpatialVector(vec)`` is a spatial vector constructed from the 6-element array-like ``vec``
        - ``SpatialVector([V1, V2, ... VN])`` is a spatial vector array with N elements, constructed from the 6-element
          array-like values ``Vi``
        - ``SpatialVector(A)`` is a spatial vector array with N elements, constructed from the columns of the 6xN
          array ``A``.

        """
        # print('spatialVec6 init')
        super().__init__()

        if base.isvector(value, 6):
            self.data = [np.array(value)]
        elif base.isvector(value, 3):
            self.data = [np.r_[value, 0, 0, 0]]
        elif isinstance(value, SpatialVector):
            self.data = [value.A]
        elif base.ismatrix(value, (6, None)):
            self.data = [x for x in value.T]
        elif not super().arghandler(value):
            raise ValueError('bad argument to constructor')
Пример #4
0
    def Exp(cls, S, check=True, so3=True):
        r"""
        Create an SO(3) rotation matrix from so(3)

        :param S: Lie algebra so(3)
        :type S: numpy ndarray
        :param check: check that passed matrix is valid so(3), default True
        :type check: bool
        :return: SO(3) rotation
        :rtype: SO3 instance

        - ``SO3.Exp(S)`` is an SO(3) rotation defined by its Lie algebra
          which is a 3x3 so(3) matrix (skew symmetric)
        - ``SO3.Exp(t)`` is an SO(3) rotation defined by a 3-element twist
          vector (the unique elements of the so(3) skew-symmetric matrix)
        - ``SO3.Exp(T)`` is a sequence of SO(3) rotations defined by an Nx3 matrix
          of twist vectors, one per row.

        Note:
        - if :math:`\theta \eq 0` the result in an identity matrix
        - an input 3x3 matrix is ambiguous, it could be the first or third case above.  In this
          case the parameter `so3` is the decider.

        :seealso: :func:`spatialmath.base.transforms3d.trexp`, :func:`spatialmath.base.transformsNd.skew`
        """
        if base.ismatrix(S, (-1, 3)) and not so3:
            return cls([base.trexp(s, check=check) for s in S], check=False)
        else:
            return cls(base.trexp(S, check=check), check=False)
    def isvalid(v, check=True):
        """
        Test if matrix is valid twist

        :param x: array to test
        :type x: ndarray
        :return: Whether the value is a 6-vector or a valid 4x4 se(3) element
        :rtype: bool

        A twist can be represented by a 6-vector or a 4x4 skew symmetric matrix,
        for example:

        .. runblock:: pycon

            >>> from spatialmath import Twist3, base
            >>> import numpy as np
            >>> Twist3.isvalid([1, 2, 3, 4, 5, 6])
            >>> a = base.skewa([1, 2, 3, 4, 5, 6])
            >>> a
            >>> Twist3.isvalid(a)
            >>> Twist3.isvalid(np.random.rand(4,4))
        """
        if base.isvector(v, 6):
            return True
        elif base.ismatrix(v, (4, 4)):
            # maybe be an se(3)
            if not base.iszerovec(v.diagonal()):  # check diagonal is zero
                return False
            if not base.iszerovec(v[3, :]):  # check bottom row is zero
                return False
            if check and not base.isskew(v[:3, :3]):
                # top left 3x3 is skew symmetric
                return False
            return True
        return False
def colorconvert(image, src, dst):

    flag = _convertflag(src, dst)

    if isinstance(image, np.ndarray) and image.ndim == 3:
        # its a color image
        return cv.cvtColor(image, flag)
    elif base.ismatrix(image, (None, 3)):
        # not an image, see if it's Nx3
        image = base.getmatrix(image, (None, 3), dtype=np.float32)
        image = image.reshape((-1, 1, 3))
        return cv.cvtColor(image, flag).reshape((-1, 3))
Пример #7
0
 def isvalid(v, check=True):
     if base.isvector(v, 3):
         return True
     elif base.ismatrix(v, (3, 3)):
         # maybe be an se(2)
         if not all(v.diagonal() == 0):  # check diagonal is zero
             return False
         if not all(v[2, :] == 0):  # check bottom row is zero
             return False
         if not base.isskew(v[:2, :2]):
             # top left 2x2is skew symmetric
             return False
         return True
     return False
Пример #8
0
    def P3(cls, p):
        """
        Create a plane object from three points
        
        :param p: Three points in the plane
        :type p: numpy.ndarray, shape=(3,3)
        :return: a Plane object
        :rtype: Plane
        """

        p = base.ismatrix(p, (3, 3))
        v1 = p[:, 0]
        v2 = p[:, 1]
        v3 = p[:, 2]

        # compute a normal
        n = np.cross(v2 - v1, v3 - v1)

        return cls(n, v1)
    def __init__(self, m=None, r=None, I=None):
        """
        Create a new spatial inertia

        :param m: mass
        :type m: float
        :param r: centre of mass relative to link frame
        :type r: 3-element array_like
        :param I: inertia about the centre of mass, axes aligned with link frame
        :type I: numpy.array, shape=(6,6)

        - ``SpatialInertia(m, r I)`` is a spatial inertia object for a rigid-body
          with mass ``m``, centre of mass at ``r`` relative to the link frame, and an
          inertia matrix ``I`` (3x3) about the centre of mass.

        - ``SpatialInertia(I)`` is a spatial inertia object with a value equal
          to ``I`` (6x6).

        :SymPy: supported
        """
        super().__init__()

        if m is None and r is None and I is None:
            # no arguments
            I = SpatialInertia._identity()
        elif m is not None and r is None and I is None and base.ismatrix(
                m, (6, 6)):
            I = base.getmatrix(m, (6, 6))
        elif m is not None and r is not None:
            r = base.getvector(r, 3)
            if I is None:
                I = np.zeros((3, 3))
            else:
                I = base.getmatrix(I, (3, 3))
            C = base.skew(r)
            M = np.diag((m, ) * 3)  # sym friendly
            I = np.block([[M, m * C.T], [m * C, I + m * C @ C.T]])
        else:
            raise ValueError('bad values')

        self.data = [I]
Пример #10
0
    def isvalid(v, check=True):
        """
        Test if matrix is valid twist

        :param x: array to test
        :type x: numpy.ndarray
        :return: true of the matrix is a 6-vector or a 4x4 se(3) element
        :rtype: bool

        A twist can be reprented by a 6-vector or a 4x4 skew symmetric matrix,
        for example::

            Twist3.isvalid([1, 2, 3, 4, 5, 6])
            >>> a = base.skewa([1, 2, 3, 4, 5, 6])
            >>> a
            array([[ 0., -6.,  5.,  1.],
                [ 6.,  0., -4.,  2.],
                [-5.,  4.,  0.,  3.],
                [ 0.,  0.,  0.,  0.]])
            >>> Twist3.isvalid(a)
            True
            >>> b=np.random.rand(4,4)
            >>> Twist3.isvalid(b)
            False
        """
        if base.isvector(v, 6):
            return True
        elif base.ismatrix(v, (4, 4)):
            # maybe be an se(3)
            if not all(v.diagonal() == 0):  # check diagonal is zero
                return False
            if not all(v[3, :] == 0):  # check bottom row is zero
                return False
            if not base.isskew(v[:3, :3]):
                # top left 3x3 is skew symmetric
                return False
            return True
        return False
Пример #11
0
    def isvalid(v, check=True):
        """
        Test if matrix is valid twist

        :param x: array to test
        :type x: numpy.ndarray
        :return: true of the matrix is a 6-vector or a 4x4 se(3) element
        :rtype: bool

        """
        if base.isvector(v, 6):
            return True
        elif base.ismatrix(v, (4, 4)):
            # maybe be an se(3)
            if not all(v.diagonal() == 0):  # check diagonal is zero
                return False
            if not all(v[3, :] == 0):  # check bottom row is zero
                return False
            if not base.isskew(v[:3, :3]):
                # top left 3x3 is skew symmetric
                return False
            return True
        return False
Пример #12
0
def trinterp2(start, end, s=None):
    """
    Interpolate SE(2) or SO(2) matrices

    :param start: initial SE(2) or SO(2) matrix value when s=0, if None then identity is used
    :type start: ndarray(3,3) or ndarray(2,2) or None
    :param end: final SE(2) or SO(2) matrix, value when s=1
    :type end: ndarray(3,3) or ndarray(2,2)
    :param s: interpolation coefficient, range 0 to 1
    :type s: float
    :return: interpolated SE(2) or SO(2) matrix value
    :rtype: ndarray(3,3) or ndarray(2,2)
    :raises ValueError: bad arguments

    - ``trinterp2(None, T, S)`` is a homogeneous transform (3x3) interpolated
      between identity when S=0 and T (3x3) when S=1.
    - ``trinterp2(T0, T1, S)`` as above but interpolated
      between T0 (3x3) when S=0 and T1 (3x3) when S=1.
    - ``trinterp2(None, R, S)`` is a rotation matrix (2x2) interpolated
      between identity when S=0 and R (2x2) when S=1.
    - ``trinterp2(R0, R1, S)`` as above but interpolated
      between R0 (2x2) when S=0 and R1 (2x2) when S=1.

    .. note:: Rotation angle is linearly interpolated.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> T1 = transl2(1, 2)
        >>> T2 = transl2(3, 4)
        >>> trinterp2(T1, T2, 0)
        >>> trinterp2(T1, T2, 1)
        >>> trinterp2(T1, T2, 0.5)
        >>> trinterp2(None, T2, 0)
        >>> trinterp2(None, T2, 1)
        >>> trinterp2(None, T2, 0.5)

    :seealso: :func:`~spatialmath.base.transforms3d.trinterp`

    """
    if base.ismatrix(end, (2, 2)):
        # SO(2) case
        if start is None:
            #	TRINTERP2(T, s)

            th0 = math.atan2(end[1, 0], end[0, 0])

            th = s * th0
        else:
            #	TRINTERP2(T1, start= s)
            if start.shape != end.shape:
                raise ValueError("start and end matrices must be same shape")

            th0 = math.atan2(start[1, 0], start[0, 0])
            th1 = math.atan2(end[1, 0], end[0, 0])

            th = th0 * (1 - s) + s * th1

        return rot2(th)
    elif base.ismatrix(end, (3, 3)):
        if start is None:
            #	TRINTERP2(T, s)

            th0 = math.atan2(end[1, 0], end[0, 0])
            p0 = transl2(end)

            th = s * th0
            pr = s * p0
        else:
            #	TRINTERP2(T0, T1, s)
            if start.shape != end.shape:
                raise ValueError("both matrices must be same shape")

            th0 = math.atan2(start[1, 0], start[0, 0])
            th1 = math.atan2(end[1, 0], end[0, 0])

            p0 = transl2(start)
            p1 = transl2(end)

            pr = p0 * (1 - s) + s * p1
            th = th0 * (1 - s) + s * th1

        return base.rt2tr(rot2(th), pr)
    else:
        return ValueError('Argument must be SO(2) or SE(2)')
Пример #13
0
def trexp2(S, theta=None, check=True):
    """
    Exponential of so(2) or se(2) matrix

    :param S: se(2), so(2) matrix or equivalent velctor
    :type T: ndarray(3,3) or ndarray(2,2)
    :param theta: motion
    :type theta: float
    :return: matrix exponential in SE(2) or SO(2)
    :rtype: ndarray(3,3) or ndarray(2,2)
    :raises ValueError: bad argument

    An efficient closed-form solution of the matrix exponential for arguments
    that are se(2) or so(2).

    For se(2) the results is an SE(2) homogeneous transformation matrix:

    - ``trexp2(Σ)`` is the matrix exponential of the se(2) element ``Σ`` which is
      a 3x3 augmented skew-symmetric matrix.
    - ``trexp2(Σ, θ)`` as above but for an se(3) motion of Σθ, where ``Σ``
      must represent a unit-twist, ie. the rotational component is a unit-norm skew-symmetric
      matrix.
    - ``trexp2(S)`` is the matrix exponential of the se(3) element ``S`` represented as
      a 3-vector which can be considered a screw motion.
    - ``trexp2(S, θ)`` as above but for an se(2) motion of Sθ, where ``S``
      must represent a unit-twist, ie. the rotational component is a unit-norm skew-symmetric
      matrix.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> trexp2(skew(1))
        >>> trexp2(skew(1), 2)  # revolute unit twist
        >>> trexp2(1)
        >>> trexp2(1, 2)  # revolute unit twist

    For so(2) the results is an SO(2) rotation matrix:

    - ``trexp2(Ω)`` is the matrix exponential of the so(3) element ``Ω`` which is a 2x2
      skew-symmetric matrix.
    - ``trexp2(Ω, θ)`` as above but for an so(3) motion of Ωθ, where ``Ω`` is
      unit-norm skew-symmetric matrix representing a rotation axis and a rotation magnitude
      given by ``θ``.
    - ``trexp2(ω)`` is the matrix exponential of the so(2) element ``ω`` expressed as
      a 1-vector.
    - ``trexp2(ω, θ)`` as above but for an so(3) motion of ωθ where ``ω`` is a
      unit-norm vector representing a rotation axis and a rotation magnitude
      given by ``θ``. ``ω`` is expressed as a 1-vector.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> trexp2(skewa([1, 2, 3]))
        >>> trexp2(skewa([1, 0, 0]), 2)  # prismatic unit twist
        >>> trexp2([1, 2, 3])
        >>> trexp2([1, 0, 0], 2)

    :seealso: trlog, trexp2
    """

    if base.ismatrix(S, (3, 3)) or base.isvector(S, 3):
        # se(2) case
        if base.ismatrix(S, (3, 3)):
            # augmentented skew matrix
            if check and not base.isskewa(S):
                raise ValueError("argument must be a valid se(2) element")
            tw = base.vexa(S)
        else:
            # 3 vector
            tw = base.getvector(S)

        if base.iszerovec(tw):
            return np.eye(3)

        if theta is None:
            (tw, theta) = base.unittwist2_norm(tw)
        elif not base.isunittwist2(tw):
            raise ValueError("If theta is specified S must be a unit twist")

        t = tw[0:2]
        w = tw[2]

        R = base.rodrigues(w, theta)

        skw = base.skew(w)
        V = np.eye(2) * theta + (1.0 - math.cos(theta)) * skw + (
            theta - math.sin(theta)) * skw @ skw

        return base.rt2tr(R, V @ t)

    elif base.ismatrix(S, (2, 2)) or base.isvector(S, 1):
        # so(2) case
        if base.ismatrix(S, (2, 2)):
            # skew symmetric matrix
            if check and not base.isskew(S):
                raise ValueError("argument must be a valid so(2) element")
            w = base.vex(S)
        else:
            # 1 vector
            w = base.getvector(S)

        if theta is not None and not base.isunitvec(w):
            raise ValueError("If theta is specified S must be a unit twist")

        # do Rodrigues' formula for rotation
        return base.rodrigues(w, theta)
    else:
        raise ValueError(
            " First argument must be SO(2), 1-vector, SE(2) or 3-vector")
Пример #14
0
def transl2(x, y=None):
    """
    Create SE(2) pure translation, or extract translation from SE(2) matrix


    **Create a translational SE(2) matrix**

    :param x: translation along X-axis
    :type x: float
    :param y: translation along Y-axis
    :type y: float
    :return: SE(2) transform matrix or the translation elements of a homogeneous transform
    :rtype: ndarray(3,3)

    - ``T = transl2([X, Y])`` is an SE(2) homogeneous transform (3x3) representing a
      pure translation.
    - ``T = transl2( V )`` as above but the translation is given by a 2-element
      list, dict, or a numpy array, row or column vector.


    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> import numpy as np
        >>> transl2(3, 4)
        >>> transl2([3, 4])
        >>> transl2(np.array([3, 4]))

    **Extract the translational part of an SE(2) matrix**

    :param x: SE(2) transform matrix
    :type x: ndarray(3,3)
    :return: translation elements of SE(2) matrix
    :rtype: ndarray(2)

    - ``t = transl2(T)`` is the translational part of the SE(3) matrix ``T`` as a
      2-element NumPy array.


    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> import numpy as np
        >>> T = np.array([[1, 0, 3], [0, 1, 4], [0, 0, 1]])
        >>> transl2(T)
        
    .. note:: This function is compatible with the MATLAB version of the Toolbox.  It
        is unusual/weird in doing two completely different things inside the one
        function.
    """

    if np.isscalar(x):
        T = np.identity(3)
        T[:2, 2] = [x, y]
        return T
    elif base.isvector(x, 2):
        T = np.identity(3)
        T[:2, 2] = base.getvector(x, 2)
        return T
    elif base.ismatrix(x, (3, 3)):
        return x[:2, 2]
    else:
        ValueError('bad argument')