def initializeModels(): model = newModel() generations = Generation(model, mChance) for i in range(2): board = [0 for x in range(10)] board = [list(board) for x in range(20)] species = Species(model, [board] * 2, [[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0]], mChance) species.evolve() species.addName(f'Gen 0, Species {i}') print(species.name) playGame(species) generations.population.append(species) print(f'For a total of {species.score:.2f}!') generations.breed() generations.child.addName('Gen 0, Species Child') generations.saveGen() print('Finished initialization!') return generations
def initializeModels(): model = Sequential() model.add(LSTM(200,activation='sigmoid',input_shape=(10,20))) model.add(LSTM(1800,activation='softplus')) model.add(LSTM(8,activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) generations = [Generation(model,9)] for i in range(2): species = Species(model,[[[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0]]],[[1,0,0,0,0,0,0,0],[1,0,0,0,0,0,0,0]],5) species.evolve() species.addName('Gen 0, Species {}'.format(i)) print(species.name) playGame(species) generations[0].population.append(species) print('For a total of {:.2f}!'.format(species.score)) generations[0].breed() generations[0].child.addName('Gen 0, Species Child') generations[0].saveGen() print('Finished initialization!') return generations