def newCompositeDetectedPersonsAvailable(compositeDetectedPersons):
    detectedPersons = DetectedPersons()
    detectedPersons.header = compositeDetectedPersons.header

    for compositeDetectedPerson in compositeDetectedPersons.elements:
        detectedPerson = DetectedPerson()
        detectedPerson.detection_id = compositeDetectedPerson.composite_detection_id
        detectedPerson.confidence = compositeDetectedPerson.max_confidence
        detectedPerson.pose = compositeDetectedPerson.pose

        involvedModalities = list(set([originalDetection.modality for originalDetection in compositeDetectedPerson.original_detections]))
        detectedPerson.modality = ",".join(sorted(involvedModalities))

        detectedPersons.detections.append(detectedPerson)

    detectedPersonsPublisher.publish(detectedPersons)
    def __init__(self):
        super(ProjectionNode, self).__init__()

        # init the node
        rospy.init_node('projection_node', anonymous=False)

        self.listener = tf.TransformListener()

        self._bridge = CvBridge()

        (depth_topic, face_topic, output_topic, f, cx, cy,id_increment,id_offset,output_spencer) = \
            self.get_parameters()

        # Subscribe to the face positions
        sub_obj = message_filters.Subscriber(face_topic,\
            BoundingBoxes)

        sub_depth = message_filters.Subscriber(depth_topic,\
            Image)

        # Advertise the result of Face Depths
        self.pub = rospy.Publisher(output_topic, \
            DetectionArray, queue_size=1)
        self.pub_pic = rospy.Publisher("/darknet_projection/image",
                                       Image,
                                       queue_size=1)
        self.pub_spencer = rospy.Publisher("/test_spencer",
                                           DetectedPersons,
                                           queue_size=1)
        #self.pub_spencer=rospy.Publisher("", DetectedPersons,queue_size=1)
        self.pub_spencer_odom = rospy.Publisher(output_spencer,
                                                DetectedPersonsOdom,
                                                queue_size=1)
        # Create the message filter
        ts = message_filters.ApproximateTimeSynchronizer(\
            [sub_obj, sub_depth], \
            2, \
            0.9)

        ts.registerCallback(self.detection_callback)

        self.timer = rospy.Timer(rospy.Duration(0.166), self.timer_cb)
        self.timer_pros = rospy.Timer(rospy.Duration(0.02), self.timer_cb_pros)
        self.new_msgs = False
        self.f = f
        self.cx = cx
        self.cy = cy

        self.detection_id_increment = id_increment
        self.detection_id_offset = id_offset
        self.current_detection_id = self.detection_id_offset
        self.spencer_detect = DetectedPersons()
        self.last_time = rospy.get_rostime().secs
        self.bridge = CvBridge()
        self.new_bounding = False
        self.message = []
        self.lock = threading.RLock()

        # spin
        rospy.spin()
Пример #3
0
def newMessageReceived(positionMeasurementArray):
    detectedPersons = DetectedPersons()

    if positionMeasurementArray.people:
        detectedPersons.header = positionMeasurementArray.people[0].header
    else:
        detectedPersons.header = positionMeasurementArray.header
        detectedPersons.header.frame_id = "odom"  # hack since frame_id is not known

    global detectionId, detectionIdIncrement
    for positionMeasurement in positionMeasurementArray.people:
        # We assume that all detections have the same frame ID
        assert (detectedPersons.header.frame_id ==
                positionMeasurement.header.frame_id)

        # Construct DetectedPerson
        detectedPerson = DetectedPerson()
        detectedPerson.modality = positionMeasurement.name
        detectedPerson.confidence = positionMeasurement.reliability
        detectedPerson.pose.pose.position = positionMeasurement.pos

        # Covariance
        for x in xrange(0, 3):
            for y in xrange(0, 3):
                detectedPerson.pose.covariance[
                    y * 6 +
                    x] = positionMeasurement.covariance[y * 3 + x] * covScale

        for i in xrange(3, 6):
            detectedPerson.pose.covariance[i * 6 + i] = 99999.0

        # Detection ID
        if useObjectId:
            match = re.search("[0-9]+", positionMeasurement.object_id)
            if match:
                detectedPerson.detection_id = int(match.group(0))
        else:
            detectedPerson.detection_id = detectionId
            detectionId += detectionIdIncrement

        detectedPersons.detections.append(detectedPerson)

    pub.publish(detectedPersons)
Пример #4
0
def newCompositeDetectedPersonsAvailable(compositeDetectedPersons):
    detectedPersons = DetectedPersons()
    detectedPersons.header = compositeDetectedPersons.header

    for compositeDetectedPerson in compositeDetectedPersons.elements:
        detectedPerson = DetectedPerson()
        detectedPerson.detection_id = compositeDetectedPerson.composite_detection_id
        detectedPerson.confidence = compositeDetectedPerson.max_confidence
        detectedPerson.pose = compositeDetectedPerson.pose

        involvedModalities = list(
            set([
                originalDetection.modality for originalDetection in
                compositeDetectedPerson.original_detections
            ]))
        detectedPerson.modality = ",".join(sorted(involvedModalities))

        detectedPersons.detections.append(detectedPerson)

    detectedPersonsPublisher.publish(detectedPersons)
def newMessageReceived(poseArray):
    detectedPersons = DetectedPersons()
    detectedPersons.header = poseArray.header

    global detectionId, detectionIdIncrement

    for pose in poseArray.poses:
        detectedPerson = DetectedPerson()
        detectedPerson.modality = modality;
        detectedPerson.confidence = confidence
        detectedPerson.detection_id = detectionId
        detectedPerson.pose.pose = pose

        for i in xrange(0, 6):
            detectedPerson.pose.covariance[i*6 + i] = posVariance if i < 3 else rotVariance

        detectedPersons.detections.append(detectedPerson)
        detectionId += detectionIdIncrement

    pub.publish(detectedPersons)
Пример #6
0
    def CallBack(self, data):
        detectedPersons = DetectedPersons()
        detectedPersons.header = data.header

        for Person in data.people:
            detectedPerson = DetectedPerson()
            detectedPerson.modality = self.modality
            detectedPerson.confidence = self.confidence
            detectedPerson.detection_id = self.detectionId
            detectedPerson.pose.pose = Person.pose

            for i in xrange(0, 6):
                detectedPerson.pose.covariance[
                    i * 6 +
                    i] = self.posVariance if i < 3 else self.rotVariance

            detectedPersons.detections.append(detectedPerson)
            self.detectionId += self.detectionIdIncrement

        self.pub.publish(detectedPersons)
Пример #7
0
def newMessageReceived(poseArray):
    detectedPersons = DetectedPersons()
    detectedPersons.header = poseArray.header

    global detectionId, detectionIdIncrement

    for pose in poseArray.poses:
        detectedPerson = DetectedPerson()
        detectedPerson.modality = modality
        detectedPerson.confidence = confidence
        detectedPerson.detection_id = detectionId
        detectedPerson.pose.pose = pose

        for i in xrange(0, 6):
            detectedPerson.pose.covariance[
                i * 6 + i] = posVariance if i < 3 else rotVariance

        detectedPersons.detections.append(detectedPerson)
        detectionId += detectionIdIncrement

    pub.publish(detectedPersons)
def newMessageReceived(positionMeasurementArray):
    detectedPersons = DetectedPersons()

    if positionMeasurementArray.people:
        detectedPersons.header = positionMeasurementArray.people[0].header
    else:
        detectedPersons.header = positionMeasurementArray.header
        detectedPersons.header.frame_id = "odom"  # hack since frame_id is not known

    global detectionId, detectionIdIncrement
    for positionMeasurement in positionMeasurementArray.people:
        # We assume that all detections have the same frame ID
        assert(detectedPersons.header.frame_id == positionMeasurement.header.frame_id)

        # Construct DetectedPerson
        detectedPerson = DetectedPerson()
        detectedPerson.modality = positionMeasurement.name;
        detectedPerson.confidence = positionMeasurement.reliability
        detectedPerson.pose.pose.position = positionMeasurement.pos
        
        # Covariance
        for x in xrange(0, 3):
            for y in xrange(0, 3):
                detectedPerson.pose.covariance[y*6 + x] = positionMeasurement.covariance[y*3 + x] * covScale

        for i in xrange(3, 6):
            detectedPerson.pose.covariance[i*6 + i] = 99999.0

        # Detection ID
        if useObjectId:
            match = re.search("[0-9]+", positionMeasurement.object_id)
            if match:
                detectedPerson.detection_id = int(match.group(0))
        else:
            detectedPerson.detection_id = detectionId
            detectionId += detectionIdIncrement

        detectedPersons.detections.append(detectedPerson)
        
    pub.publish(detectedPersons)
    def timer_cb(self, timer):
        """
        Timercallback: To publish spencer msgs

        """
        if ((rospy.get_rostime().secs - self.last_time) > 0.05):
            self.new_msgs = False
        if (self.new_msgs):
            #self.pub_spencer.publish(self.spencer_detect)
            pass

        else:
            spencer_detect_temp = DetectedPersons()
            spencer_detect_temp.header.stamp = rospy.get_rostime()
            spencer_detect_temp.header.frame_id = "cam_front_color_optical_frame"
    def detection_callback(self, msg, depth):
        """
        Callback for RGB images: The main logic is applied here

        Args:
        msg (cob_perception_msgs/DetectionArray): detections array
        depth (sensor_msgs/PointCloud2): depth image from camera

        """

        cv_depth = self._bridge.imgmsg_to_cv2(depth, "passthrough")

        # get the number of detections
        no_of_detections = len(msg.detections)
        spencer_detected_persons = DetectedPersons()
        spencer_detected_persons.header = msg.header
        # Check if there is a detection
        if no_of_detections > 0:
            for i, detection in enumerate(msg.detections):

                x = detection.mask.roi.x
                y = detection.mask.roi.y
                width = detection.mask.roi.width
                height = detection.mask.roi.height
                scale = 0.3
                height_delta = (height - height * scale) / 2
                y = y = height_delta

                width_delta = (width - width * scale) / 2

                cv_depth_bounding_box = cv_depth[
                    int(y + height_delta):int(y + height_delta +
                                              height * scale),
                    int(x + width_delta):int(x + width_delta + width * scale)]

                try:

                    depth_mean = np.nanmedian(\
                       cv_depth_bounding_box[np.nonzero(cv_depth_bounding_box)])

                    real_x = (x + width / 2 - self.cx) * (depth_mean) / self.f

                    real_y = (y + height / 2 - self.cy) * (depth_mean) / self.f

                    msg.detections[i].pose.pose.position.x = real_x
                    msg.detections[i].pose.pose.position.y = real_y
                    msg.detections[i].pose.pose.position.z = depth_mean
                    if (msg.detections[i].label == 'person'):
                        spencer_detected_person = DetectedPerson()
                        spencer_detected_person.modality = spencer_detected_person.MODALITY_GENERIC_RGBD
                        spencer_detected_person.confidence = 1
                        spencer_detected_person.pose.pose = msg.detections[
                            i].pose.pose
                        LARGE_VARIANCE = 999999999
                        pose_variance = 0.05
                        spencer_detected_person.pose.covariance[
                            0 * 6 + 0] = pose_variance
                        spencer_detected_person.pose.covariance[
                            1 * 6 + 1] = pose_variance
                        spencer_detected_person.pose.covariance[
                            2 * 6 + 2] = pose_variance
                        spencer_detected_person.pose.covariance[
                            3 * 6 + 3] = LARGE_VARIANCE
                        spencer_detected_person.pose.covariance[
                            4 * 6 + 4] = LARGE_VARIANCE
                        spencer_detected_person.pose.covariance[
                            5 * 6 + 5] = LARGE_VARIANCE
                        spencer_detected_person.detection_id = self.current_detection_id
                        self.current_detection_id = self.current_detection_id + self.detection_id_increment
                        spencer_detected_persons.detections.append(
                            spencer_detected_person)

                except Exception as e:
                    print e

        self.pub.publish(msg)
        self.pub_spencer.publish(spencer_detected_persons)
Пример #11
0
    def newSegmentationReceived(self, laserscan, laserscanSegmentation):
        currentStamp = laserscanSegmentation.header.stamp
        pointCount = len(laserscan.ranges)
        cartesianCoordinates = []

        # Required for velocity calculations
        if self._lastDataStamp is None:
            self._lastDataStamp = laserscanSegmentation.header.stamp

        # Build lookup of cartesian coordinates per laser point
        for pointIndex in xrange(0, pointCount):
            cartesianCoordinates.append(
                self.calculateCartesianCoordinates(laserscan, pointIndex))

        # For each labelled segment, create and append one TrackedPerson and DetectedPerson message
        trackedPersons = TrackedPersons(header=laserscanSegmentation.header)
        detectedPersons = DetectedPersons(header=laserscanSegmentation.header)
        for segment in laserscanSegmentation.segments:
            # Calculate centroid of tracked person
            centroid = numpy.array([0.0, 0.0, 0.0])
            for pointIndex in segment.measurement_indices:
                centroid += cartesianCoordinates[pointIndex]
            centroid /= float(len(segment.measurement_indices))

            # Lookup previous centroid (for velocity/twist calculation), assume zero velocity at track initialization
            if not segment.label in self._previousCentroidLookup:
                self._previousCentroidLookup[
                    segment.label] = collections.deque()

            # Maintain centroid history
            centroidHistory = self._previousCentroidLookup[segment.label]
            while len(centroidHistory) > 20:
                centroidHistory.popleft()

            # Calculate average velocity over past few frames
            dt = 0
            velocity = accumulatedVelocity = numpy.array([0.0, 0.0, 0.0])

            if centroidHistory:
                previousCentroid = centroid
                previousStamp = currentStamp
                for historyStamp, historyCentroid in reversed(centroidHistory):
                    accumulatedVelocity += previousCentroid - historyCentroid
                    dt += abs((previousStamp - historyStamp).to_sec())
                    previousCentroid = historyCentroid
                    previousStamp = historyStamp

                velocity = accumulatedVelocity / dt

            centroidHistory.append((currentStamp, centroid))

            # Remember age of track
            if not segment.label in self._firstTrackEncounterLookup:
                self._firstTrackEncounterLookup[segment.label] = currentStamp

            # Initialize TrackedPerson message
            trackedPerson = TrackedPerson()

            trackedPerson.track_id = segment.label
            trackedPerson.age = currentStamp - self._firstTrackEncounterLookup[
                segment.label]
            trackedPerson.detection_id = self._detectionIdCounter
            trackedPerson.is_occluded = False

            # Set position
            LARGE_VARIANCE = 99999999
            trackedPerson.pose.pose.position.x = centroid[0]
            trackedPerson.pose.pose.position.y = centroid[1]
            trackedPerson.pose.pose.position.z = centroid[2]

            # Set orientation
            if dt > 0:
                yaw = math.atan2(velocity[1], velocity[0])
                quaternion = tf.transformations.quaternion_from_euler(
                    0, 0, yaw)
                trackedPerson.pose.pose.orientation = Quaternion(
                    x=quaternion[0],
                    y=quaternion[1],
                    z=quaternion[2],
                    w=quaternion[3])

            trackedPerson.pose.covariance[
                2 * 6 + 2] = trackedPerson.pose.covariance[
                    3 * 6 + 3] = trackedPerson.pose.covariance[
                        4 * 6 + 4] = LARGE_VARIANCE  # z pos, roll, pitch

            # Set velocity
            if dt > 0:
                trackedPerson.twist.twist.linear.x = velocity[0]
                trackedPerson.twist.twist.linear.y = velocity[1]
                trackedPerson.twist.twist.linear.z = velocity[2]

            trackedPerson.twist.covariance[
                2 * 6 + 2] = trackedPerson.twist.covariance[
                    3 * 6 + 3] = trackedPerson.twist.covariance[
                        4 * 6 + 4] = trackedPerson.twist.covariance[
                            5 * 6 +
                            5] = LARGE_VARIANCE  # linear z, angular x, y, z

            # Append to list of tracked persons
            trackedPersons.tracks.append(trackedPerson)

            # Initialize DetectedPerson message by copying data from TrackedPerson
            detectedPerson = DetectedPerson()
            detectedPerson.detection_id = trackedPerson.detection_id
            detectedPerson.confidence = 1.0
            detectedPerson.pose = copy.deepcopy(trackedPerson.pose)
            detectedPerson.pose.pose.orientation = Quaternion()
            for i in xrange(0, 2):
                detectedPerson.pose.covariance[i * 6 + i] = 0.17 * 0.17
            detectedPerson.pose.covariance[5 * 6 + 5] = LARGE_VARIANCE  # yaw

            detectedPersons.detections.append(detectedPerson)
            self._detectionIdCounter += 1

        # Publish tracked persons
        self.trackedPersonsPublisher.publish(trackedPersons)
        self.detectedPersonsPublisher.publish(detectedPersons)

        self._lastDataStamp = laserscanSegmentation.header.stamp
Пример #12
0
updateRateHz = 10

# Test coordinate frame for checking if mapping into the fixed frame works correctly
frameOffset = (0, 0, 0)
frameOrientation = tf.transformations.quaternion_from_euler(0,  0,  0) # 90.0 / 180.0 * pi

print("Sending test messages on " + observationTopic + " and " + trackTopic)
rate = rospy.Rate(updateRateHz)
while not rospy.is_shutdown():
    br.sendTransform(frameOffset, frameOrientation, rospy.Time.now(), "test_tf_frame", "odom")

    trackedPersons = TrackedPersons()
    trackedPersons.header.frame_id = "/test_tf_frame"
    trackedPersons.header.stamp = rospy.Time.now()

    detectedPersons = DetectedPersons()
    detectedPersons.header = trackedPersons.header

    tracks = trackedPersons.tracks;
    detections = detectedPersons.detections;

    createTrackAndDetection(tracks, detections, idShift+0, 3, currentAngle, 2.0)
    createTrackAndDetection(tracks, detections, idShift+1, 7, currentAngle + pi / 2, 2.5)
    createTrackAndDetection(tracks, detections, idShift+2, -1, currentAngle + pi / 1, 3.0)
    createTrackAndDetection(tracks, detections, idShift+3, -1, currentAngle + pi * 1.5, cos(currentAngle) * 3.5  + 7.0)
    createTrackAndDetection(tracks, detections, idShift+4, 88, 0.0, 0.0)

    trackPublisher.publish( trackedPersons )
    observationPublisher.publish( detectedPersons )

    currentAngle += angleStep
	def infer(self, velodyne_points, cluster_array, marker_array):

		global fout
		global is_save
		global frame_count

		start_time = time.time()

		# convert PointCloud2 message to PCL
		static_cloud = self.convertPLmsg2array(velodyne_points, mode='XYZI')

		clusters = cluster_array.clusters

		Cloud = []
		for cluster in clusters:
			cloud = self.convertPLmsg2array(cluster)
			cloud_np = np.asarray(cloud)
			# nomalise the cluser and intensity
			cloud_centriod = np.mean(cloud_np[:, :3], axis=0)
			cloud_np[:, :3] -= cloud_centriod
			cloud_np[:, -1] = cloud_np[:, -1] / 255.
			Cloud.append(cloud_np)
			# print cloud_np

		Image = utility.convert2images(Cloud, self.saved_args.input_dim[0])

		feed = {self.model.input_data: Image}
		output, feature, pred = self.sess.run([self.model.output, self.model.feature, self.model.pred], feed)

		# index = np.nonzero(np.max(np.array(output, dtype=np.float32), axis=1) > 0.7)
		# pred = np.array(pred, dtype=np.float32)
		# pred = pred[index[0]]
		# pred = pred.tolist()

		# transform detection to /map
		done = False

		while not done and self.is_save_bbox:
			try:
				transform = self.tf_buffer.lookup_transform(self.target_frame, self.sensor_frame_id, rospy.Time(), rospy.Duration(10))
				done = True
			except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException):
				print "transform2 exception"
				continue

		print "transform done!"

		objs_markers = MarkerArray()
		detected_persons = DetectedPersons()
		detected_persons.header = velodyne_points.header

		for p, m, o, f in zip(pred, marker_array.markers, output, feature):

			r = 0
			g = 0
			b = 0

			if p == 1:
				r = 1.0
				bbox_min = m.points[10]
				bbox_max = m.points[0]

				detectedPerson = DetectedPerson()
				detectedPerson.pose.pose.position.x = (bbox_min.x + bbox_max.x) / 2.0
				detectedPerson.pose.pose.position.y = (bbox_min.y + bbox_max.y) / 2.0
				detectedPerson.pose.pose.position.z = (bbox_min.z + bbox_max.z) / 2.0
				detectedPerson.modality = DetectedPerson.MODALITY_GENERIC_LASER_3D
				detectedPerson.confidence = 1.0
				detectedPerson.detection_id = 0
				detected_persons.detections.append(detectedPerson)
			elif p == 2:
				r = 1.0
           			g = 1.0 # truck
			else:
				r = 0.
				continue

			m.color.r = r
			m.color.g = g
			m.color.b = b

			objs_markers.markers.append(m)

			if p >= 1: #
				static_cloud = self.crop_box(static_cloud, m)

			if self.is_save_bbox:
				bbox_min = m.points[10]
				bbox_max = m.points[0]

				bbox_min_pt = self.transform_3d_pt([bbox_min.x, bbox_min.y, bbox_min.z], transform)
				bbox_max_pt = self.transform_3d_pt([bbox_max.x, bbox_max.y, bbox_max.z], transform)

				output_line = [frame_count] + bbox_min_pt + bbox_max_pt + o.tolist() + f.tolist()

				for i in output_line:
					fout.write("%f "% i)

				fout.write("\n")

		frame_count += 1

		self.marker_pub.publish(objs_markers)
		self.detected_persons_pub.publish(detected_persons)

		if self.velodyne_pub.get_num_connections():

			header = velodyne_points.header

			pointFiledx = PointField('x', 0, 7, 1)
			pointFiledy = PointField('y', 4, 7, 1)
			pointFieldz = PointField('z', 8, 7, 1)
			pointFieldi = PointField('intensity', 12, 7, 1)
			pointFiled = [pointFiledx, pointFiledy, pointFieldz, pointFieldi]

			header = velodyne_points.header
			static_velodyne = point_cloud2.create_cloud(header, pointFiled, static_cloud)

			self.velodyne_pub.publish(static_velodyne)

		print("[inference_node]: runing time = " + str(time.time()-start_time))
msgCounter = 0
detectionCounter = 0
trackDictionary = dict()

# Test coordinate frame for checking if mapping into the fixed frame works correctly
frameOffset = (0, 0, 0)
frameOrientation = tf.transformations.quaternion_from_euler(0,  0,  0) # 90.0 / 180.0 * pi

rospy.loginfo("Publishing mock data on " + detectionTopic + " and " + trackTopic)
rate = rospy.Rate(updateRateHz)

while not rospy.is_shutdown():
    detectionFrameId = "imaginary_sensor_frame"
    br.sendTransform(frameOffset, frameOrientation, rospy.Time.now(), detectionFrameId, "odom")

    detectedPersons = DetectedPersons()
    detectedPersons.header.seq = msgCounter + 123456
    detectedPersons.header.frame_id = detectionFrameId
    detectedPersons.header.stamp = rospy.Time.now()

    trackedPersons = TrackedPersons()
    trackedPersons.header.seq = msgCounter
    trackedPersons.header.frame_id = "odom"
    trackedPersons.header.stamp = detectedPersons.header.stamp # synchronized with detections!

    tracks = trackedPersons.tracks;
    detections = detectedPersons.detections;

    # These are our fake tracks, created on a polar coordinate grid
    createTrackAndDetection(tracks, detections, 0, currentAngle, 2.0)
    createTrackAndDetection(tracks, detections, 1, currentAngle + pi / 2, 2.5)
    def timer_cb_pros(self, timer):
        if (self.new_bounding):
            self.lock.acquire()
            self.new_bounding = False
            msg = self.message[0]
            depth = self.message[1]
            self.lock.release()
            t = TransformStamped()
            try:
                #print(rospy.Time.now().to_sec)
                #print(depth.header.stamp)
                #time=rospy.Time.now().to_sec-depth.header.stamp.secs
                #print(time)
                (trans,
                 rot) = self.listener.lookupTransform("odom",
                                                      depth.header.frame_id,
                                                      rospy.Time(0))

                t.header.stamp = rospy.Time.now()
                t.header.frame_id = "odom"
                t.child_frame_id = depth.header.frame_id
                t.transform.translation.x = trans[0]
                t.transform.translation.y = trans[1]
                t.transform.translation.z = trans[2]
                t.transform.rotation.x = rot[0]
                t.transform.rotation.y = rot[1]
                t.transform.rotation.z = rot[2]
                t.transform.rotation.w = rot[3]
            except (tf.LookupException):
                print("LookupException")
            except (tf.ConnectivityException):
                print("ConnectivityException")
            except (tf.ExtrapolationException):
                print("ExtrapolationException")

            cv_depth = self._bridge.imgmsg_to_cv2(depth, "passthrough")
            #cv_color = self._bridge.imgmsg_to_cv2(color, "rgb8")

            # get the number of detections
            no_of_detections = len(msg.bounding_boxes)
            spencer_detected_persons = DetectedPersons()
            spencer_detected_persons.header = msg.image_header
            # Check if there is a detection
            if no_of_detections > 0:
                for i, boxes in enumerate(msg.bounding_boxes):

                    x = boxes.xmin
                    y = boxes.ymin
                    xmax = boxes.xmax
                    ymax = boxes.ymax
                    width = xmax - x
                    height = ymax - y
                    scale = 0.6
                    height_delta = (height - height * scale) / 2

                    width_delta = (width - width * scale) / 2

                    cv_depth_bounding_box = cv_depth[
                        int(y + height_delta):int(y + height_delta +
                                                  height * scale),
                        int(x + width_delta):int(x + width_delta +
                                                 width * scale)]
                    #cv_color_debug=cv_color[int(y+height_delta):int(y+height_delta+height*scale),int(x+width_delta):int(x+width_delta+width*scale)]
                    try:

                        depth_mean = np.nanmedian(\
                        cv_depth_bounding_box[np.nonzero(cv_depth_bounding_box)])

                        real_x = (x + width / 2 -
                                  self.cx) * (depth_mean) / self.f

                        real_y = (y + height / 2 -
                                  self.cy) * (depth_mean) / self.f

                        if (boxes.Class == 'person'):
                            spencer_detected_person = DetectedPerson()
                            spencer_detected_person.modality = spencer_detected_person.MODALITY_GENERIC_RGBD
                            spencer_detected_person.confidence = 1
                            spencer_detected_person.pose.pose.position.x = real_x
                            spencer_detected_person.pose.pose.position.y = real_y
                            spencer_detected_person.pose.pose.position.z = depth_mean
                            spencer_detected_person.pose.pose.orientation.w = 1.0
                            LARGE_VARIANCE = 999999999
                            pose_variance = 0.05
                            spencer_detected_person.pose.covariance[
                                0 * 6 + 0] = pose_variance
                            spencer_detected_person.pose.covariance[
                                1 * 6 + 1] = pose_variance
                            spencer_detected_person.pose.covariance[
                                2 * 6 + 2] = pose_variance
                            spencer_detected_person.pose.covariance[
                                3 * 6 + 3] = LARGE_VARIANCE
                            spencer_detected_person.pose.covariance[
                                4 * 6 + 4] = LARGE_VARIANCE
                            spencer_detected_person.pose.covariance[
                                5 * 6 + 5] = LARGE_VARIANCE
                            spencer_detected_person.detection_id = self.current_detection_id
                            self.current_detection_id = self.current_detection_id + self.detection_id_increment
                            spencer_detected_persons.detections.append(
                                spencer_detected_person)
                            #self.pub_pic.publish(self.bridge.cv2_to_imgmsg(cv_color_debug,  "rgb8"))

                    except Exception as e:
                        print e
            self.new_msgs = True
            self.last_time = rospy.get_rostime().secs
            self.spencer_detect = spencer_detected_persons
            spencer_detect_odom = DetectedPersonsOdom()
            spencer_detect_odom.DetectedPersons = spencer_detected_persons
            spencer_detect_odom.Transform = t
            #self.pub_spencer.publish(spencer_detected_persons)
            self.pub_spencer_odom.publish(spencer_detect_odom)
Пример #16
0
    def __init__(self):
        rospy.init_node('yolo_detection_to_depth')

        rospy.on_shutdown(self.shutdown)

        # Displacement of the depth camera back from the front of the robot in meters
        self.camera_displacement = 0.612

        self.display_depth_image = False

        self.base_link = rospy.get_param('~base_link', 'sibot/base_link')

        self.depth_frame = rospy.get_param('~depth_frame',
                                           'sibot/camera_rgb_optical_frame')

        self.tfBuffer = tf2_ros.Buffer()
        tf_listener = tf2_ros.TransformListener(self.tfBuffer)

        # Keep a list of peope as a People message
        self.people = People()
        self.people.header.frame_id = self.base_link

        # Publish results as people_msgs/People messages
        self.people_pub = rospy.Publisher("people", People, queue_size=5)

        # Keep a list of peope poses as PoseArray message
        self.people_poses = PoseArray()
        self.people_poses.header.frame_id = self.base_link

        # Publish detections as a pose array
        self.people_poses_pub = rospy.Publisher("people_poses",
                                                PoseArray,
                                                queue_size=5)

        # Keep a list of people 3D bounding boxes as a BoundingBoxArray message
        self.people_bounding_boxes = BoundingBoxArray()
        self.people_bounding_boxes.header.frame_id = self.depth_frame

        # Publish detections as a JSK BoundingBoxArray for viewing in RViz
        self.people_bounding_boxes_pub = rospy.Publisher(
            "people_bounding_boxes", BoundingBoxArray, queue_size=5)

        # Keep a list of detected people using the Spencer DetectedPersons message type so we can display nice graphcis in RViz
        self.detected_persons = DetectedPersons()
        self.detected_persons.header.frame_id = self.base_link

        # Publish detections as a DetectedPersons array for viewing in RViz
        self.detected_persons_pub = rospy.Publisher("detected_persons",
                                                    DetectedPersons,
                                                    queue_size=5)

        # Publish person pointclouds
        #self.people_cloud_pub = rospy.Publisher("people_clouds", PointCloud2, queue_size=5)

        # Use message filters to time synchronize the bboxes and the pointcloud
        self.bbox_sub = message_filters.Subscriber("yolo_bboxes",
                                                   bbox_array_stamped,
                                                   queue_size=10)
        self.pointcloud_sub = message_filters.Subscriber('point_cloud',
                                                         PointCloud2,
                                                         queue_size=10)

        # Register the synchronized callback
        self.time_sync = message_filters.ApproximateTimeSynchronizer(
            [self.bbox_sub, self.pointcloud_sub], 10, 2)
        self.time_sync.registerCallback(self.get_bbox_cog)

        rospy.loginfo("Getting detections from YOLO...")