Пример #1
0
def test_rotation_sh_basis_z_axis_real():
    rot_angle = np.pi / 2
    n_max = 2
    coords_x = Coordinates(1, 0, 0)
    coords_y = Coordinates(0, -1, 0)
    reference = np.squeeze(
        spharpy.spherical.spherical_harmonic_basis_real(n_max, coords_x))

    rot_mat = spharpy.transforms.rotation_z_axis_real(n_max, rot_angle)
    sh_vec_x = spharpy.spherical.spherical_harmonic_basis_real(n_max, coords_y)
    sh_vec_rotated = np.squeeze(rot_mat @ sh_vec_x.T)

    np.testing.assert_almost_equal(sh_vec_rotated, reference)
Пример #2
0
def test_rotation_sh_basis_z_axis_complex():
    rot_angle = np.pi / 2
    n_max = 2
    theta = np.asarray(np.pi / 2)[np.newaxis]
    phi_x = np.asarray(0.0)[np.newaxis]
    phi_y = np.asarray(np.pi / 2)[np.newaxis]
    coords_x = Coordinates(1, 0, 0)
    coords_y = Coordinates(0, -1, 0)
    reference = spherical_harmonic_basis(n_max, coords_x).T.conj()

    rot_mat = transforms.rotation_z_axis(n_max, rot_angle)
    sh_vec_x = spherical_harmonic_basis(n_max, coords_y)
    sh_vec_rotated = rot_mat @ sh_vec_x.T.conj()

    np.testing.assert_almost_equal(sh_vec_rotated, reference)
Пример #3
0
def test_spherical_harmonic():
    Nmax = 1
    theta = np.array([np.pi / 2, np.pi / 2, 0], dtype='double')
    phi = np.array([0, np.pi / 2, 0], dtype='double')
    rad = np.ones(3, dtype=np.double)
    coords = Coordinates.from_spherical(rad, theta, phi)

    Y = np.array([[
        2.820947917738781e-01 + 0.000000000000000e+00j, 3.454941494713355e-01 +
        0.000000000000000e+00j, 2.991827511286337e-17 + 0.000000000000000e+00j,
        -3.454941494713355e-01 + 0.000000000000000e+00j
    ],
                  [
                      2.820947917738781e-01 + 0.000000000000000e+00j,
                      2.115541521371041e-17 - 3.454941494713355e-01j,
                      2.991827511286337e-17 + 0.000000000000000e+00j,
                      -2.115541521371041e-17 - 3.454941494713355e-01j
                  ],
                  [
                      2.820947917738781e-01 + 0.000000000000000e+00j,
                      0.000000000000000e+00 + 0.000000000000000e+00j,
                      4.886025119029199e-01 + 0.000000000000000e+00j,
                      0.000000000000000e+00 + 0.000000000000000e+00j
                  ]],
                 dtype=complex)

    basis = sh.spherical_harmonic_basis(Nmax, coords)

    np.testing.assert_allclose(Y, basis, atol=1e-13)
Пример #4
0
def interior_stabilization_points(kr_max, resolution_factor=1):
    """ Find points inside the interior domain of an open  spherical microphone
    array that stabilize the array array response at the eigenfrequencies of
    the array. The algorithm is based on _[1] and implemented following the
    Matlab code provided by Gilles Chardon on his homepage at _[2].
    The stabilization points are independent of the sampling of the sphere
    and can therefore be combined with arbitrary spherical samplings.

    Parameters
    ----------
    kr_max : float
        The maximum kr value to be considered. This will define
        the upper frequency limit of the array.
    resolution_factor : int
        Factor to increase the spatial resolution of the grid
        used to estimate the stabilization points.

    Returns
    -------
    sampling_interior : Coordinates
        Coordinates of the stabilization points

    References
    ----------
    .. [1]  G. Chardon, W. Kreuzer, und M. Noisternig, "Design of spatial
            microphone arrays for sound field interpolation", IEEE Journal of
            Selected Topics in Signal Processing
    .. [2]  https://gilleschardon.fr/jstsp_array/

    """
    x, y, z = find_interior_points(kr_max, resolution_factor=resolution_factor)

    sampling_interior = Coordinates(x, y, z)

    return sampling_interior
Пример #5
0
def test_spherical_harmonics_real():
    n_max = 10
    theta = np.array([np.pi / 2, np.pi / 2, 0, np.pi / 2], dtype='double')
    phi = np.array([0, np.pi / 2, 0, np.pi / 4], dtype='double')
    rad = np.ones(4)
    coords = Coordinates.from_spherical(rad, theta, phi)

    reference = read_2d_matrix_from_csv('./tests/data/sh_basis_real.csv')
    basis = sh.spherical_harmonic_basis_real(n_max, coords)
    np.testing.assert_allclose(basis, reference, atol=1e-13)
Пример #6
0
def test_spherical_harmonic_n10():
    Nmax = 10
    theta = np.array([np.pi / 2, np.pi / 2, 0], dtype='double')
    phi = np.array([0, np.pi / 2, 0], dtype='double')
    n_points = len(theta)

    with patch.multiple(Coordinates,
                        azimuth=phi,
                        elevation=theta,
                        n_points=n_points) as patched_vals:
        coords = Coordinates()

        Y = np.genfromtxt('./tests/data/sh_basis_cplx_n10.csv',
                          delimiter=',',
                          dtype=np.complex)
        basis = sh.spherical_harmonic_basis(Nmax, coords)

        np.testing.assert_allclose(Y, basis, atol=1e-13)
Пример #7
0
def test_orthogonality():
    """
    Check if the orthonormality condition of the spherical harmonics is fulfilled
    """
    n_max = 82
    theta = np.array([np.pi / 2, np.pi / 2, 0, np.pi / 2], dtype='double')
    phi = np.array([0, np.pi / 2, 0, np.pi / 4], dtype='double')
    n_points = phi.size
    n_points = len(theta)

    with patch.multiple(Coordinates,
                        azimuth=phi,
                        elevation=theta,
                        n_points=n_points) as patched_vals:
        coords = Coordinates()
        basis = sh.spherical_harmonic_basis(n_max, coords)

        inner = (basis @ np.conjugate(basis.T))
        fact = 4 * np.pi / (n_max + 1)**2
        orth = np.diagonal(fact * inner)
        np.testing.assert_allclose(orth, np.ones(n_points), rtol=1e-15)
Пример #8
0
def test_spherical_harmonic_basis_gradient_real():
    n_max = 15
    theta = np.array([np.pi / 2, np.pi / 2, 0, np.pi / 2, np.pi / 4])
    phi = np.array([0, np.pi / 2, 0, np.pi / 4, np.pi / 4])
    n_points = np.size(theta)

    with patch.multiple(Coordinates,
                        azimuth=phi,
                        elevation=theta,
                        n_points=n_points):
        coords = Coordinates()

        grad_ele, grad_azi = \
            sh.spherical_harmonic_basis_gradient_real(n_max, coords)

        desire_ele = np.genfromtxt('./tests/data/Y_grad_real_ele.csv',
                                   dtype=np.complex,
                                   delimiter=',')
        npt.assert_allclose(grad_ele, desire_ele, rtol=1e-10, atol=1e-10)

        desire_azi = np.genfromtxt('./tests/data/Y_grad_real_azi.csv',
                                   dtype=np.complex,
                                   delimiter=',')
        npt.assert_allclose(grad_azi, desire_azi, rtol=1e-10, atol=1e-10)