Пример #1
0
def relative_position(obj, reference, ettemp, frame='J2000'):
    kernels = load_kernels()

    if isinstance(ettemp, Time):
        et = spice.str2et(ettemp.isot)
    elif isinstance(ettemp, float):
        et = ettemp
    else:
        et = [
            spice.str2et(e.isot) if type(e) == type(Time.now()) else e
            for e in ettemp
        ]

    abcor = 'LT+S'

    if isinstance(et, float):
        posvel, lt = spice.spkezr(obj, et, frame, abcor, reference)
        pos, vel = posvel[:3], posvel[3:]
    else:
        pos = np.zeros((len(et), 3))
        vel = np.zeros((len(et), 3))
        for i, t in enumerate(et):
            posvel, lt = spice.spkezr(obj, t, frame, abcor, reference)
            pos[i, :] = np.array(posvel[:3])
            vel[i, :] = np.array(posvel[3:])
    pos *= u.km
    vel *= u.km / u.s

    for k in kernels:
        spice.unload(k)

    return pos, vel
Пример #2
0
 def __exit__(self, exc_type, exc_val, exc_tb):
     """
     Called when the context goes out of scope. Once
     this is done, the object is out of scope and the
     kernels can be unloaded.
     """
     spice.unload(self.metakernel)
Пример #3
0
def cal2et(time, format='UTC', support_ker=False, unload=False):
    """
    Converts UTC or Calendar TDB (CAL) time to Ephemeris Time (ET). Accepts
    a single time or a lists of times. This function assumes that the support
    kernels (meta-kernel or leapseconds) kernel has been loaded.

    :param time: Input UTC or CAL time
    :type time: Union[float, list]
    :param format: Input format; 'UTC' or 'CAL'
    :type format: str
    :param unload: If True it will unload the input meta-kernel
    :type unload: bool
    :return: Output ET
    :rtype: Union[str, list]
    """
    out_list = []

    if isinstance(time, str):
        time = [time]

    #
    # We need to specify that is Calendar format in TDB. If it is UTC we need
    # to load the support kernels
    #
    if support_ker:
        spiceypy.furnsh(support_ker)

    if format == 'CAL':
        time[:] = [x.replace('T', ' ') for x in time]
        time[:] = [x + ' TDB' for x in time]

    for element in time:

        try:
            if format == 'UTC':
                out_elm = spiceypy.utc2et(element)

            elif format == 'CAL':
                out_elm = spiceypy.str2et(element)
            else:
                out_elm = element
        except:
            out_elm = spiceypy.str2et(element)

        out_list.append(out_elm)

    if len(out_list) == 1:
        out_time = out_list[0]
    else:
        out_time = out_list

    if unload:
        spiceypy.unload(support_ker)

    return out_time
Пример #4
0
    def simulate(self, starttime, stoptime, camera, threshold, obscode):
        """
        """
        #        loading all SPICE kernels required for simulation
        sp.furnsh(camera.ikfile)
        sp.furnsh(obscode + ".bsp")
        sp.furnsh(camera.ckfile)
        sp.furnsh(camera.fkfile)
        sp.furnsh(camera.sclkfile)
        count = 0

        #Print header
        #        head="#AstID "
        head = "ObjID "
        head = head + "FieldID "
        head = head + "FieldMJD "
        head = head + "AstRange(km) "
        head = head + "AstRangeRate(km/s) "
        head = head + "AstRA(deg) "
        head = head + "AstRARate(deg/day) "
        head = head + "AstDec(deg) "
        head = head + "AstDecRate(deg/day) "
        head = head + "Ast-Sun(J2000x)(km) "
        head = head + "Ast-Sun(J2000y)(km) "
        head = head + "Ast-Sun(J2000z)(km) "
        head = head + "Ast-Sun(J2000vx)(km/s) "
        head = head + "Ast-Sun(J2000vy)(km/s) "
        head = head + "Ast-Sun(J2000vz)(km/s) "
        head = head + "Obs-Sun(J2000x)(km) "
        head = head + "Obs-Sun(J2000y)(km) "
        head = head + "Obs-Sun(J2000z)(km) "
        head = head + "Obs-Sun(J2000vx)(km/s) "
        head = head + "Obs-Sun(J2000vy)(km/s) "
        head = head + "Obs-Sun(J2000vz)(km/s) "
        head = head + "Sun-Ast-Obs(deg) "
        head = head + "V "
        head = head + "V(H=0) "
        print(head)

        while self.asteroids:
            i = self.asteroids[0]
            i.nightlystates([starttime, stoptime])
            [times, ids] = i.shortlist(camera, threshold)
            i.checkvisspice(obscode, camera, times, ids)
            del i
            del self.asteroids[0]
            count = count + 1

        # Unloading all SPICE kernels required for simulation
        sp.unload(camera.ikfile)
        sp.unload(camera.ckfile)
        sp.unload(camera.fkfile)
        sp.unload(camera.sclkfile)
        sp.unload(obscode + ".bsp")
Пример #5
0
 def unload_kernels(self):
     self.sub_count()
     if self.get_count() <= 0:
         spice.unload(self.meta_kernel_path)
         msg = 'Kernels in the file {:s} are unloaded.'.format(
             self.meta_kernel_path)
         self.logger.info(msg)
         self.logging_kernel_names()
     else:
         msg = '{:s} is still used by {:d} objects.'.format(
             self.meta_kernel_path, self.get_count())
         self.logger.info(msg)
Пример #6
0
def getsta(target, TIME, mode="LT+S", observer="SOLAR SYSTEM BARYCENTER"):
    # https://spiceypy.readthedocs.io/en/master/remote_sensing.html
    #
    # Local parameters
    #
    METAKR = 'getsta.tm'

    #
    # Load the kernels that this program requires.  We
    # will need a leapseconds kernel to convert input
    # UTC time strings into ET.  We also will need the
    # necessary SPK files with coverage for the bodies
    # in which we are interested.
    #
    spiceypy.furnsh(METAKR)

    #
    #Prompt the user for the input time string.
    #
    utctim = parseDate(TIME)

    #print( 'Converting UTC Time: {:s}'.format(utctim)  )

    #
    #Convert utctim to ET.
    #
    et = spiceypy.str2et(utctim)

    #print( '   ET seconds past J2000: {:16.3f}'.format(et) )

    #
    # Compute the apparent state of target as seem from
    # observer in the J2000 frame.  All of the ephemeris
    # readers return states in units of kilometers and
    # kilometers per second.
    #
    [state, ltime] = spiceypy.spkezr(target, et, 'J2000', mode, observer)

    #print( '   Apparent state of MARS BARYCENTER (4) as seen '
    #'from SSB (0) in the J2000\n'
    #'      frame (km, km/s):'              )

    #print( '      X = {:16.3f}'.format(state[0])       )
    #print( '      Y = {:16.3f}'.format(state[1])       )
    #print( '      Z = {:16.3f}'.format(state[2])       )
    #print( '     VX = {:16.3f}'.format(state[3])       )
    #print( '     VY = {:16.3f}'.format(state[4])       )
    #print( '     VZ = {:16.3f}'.format(state[5])       )

    spiceypy.unload(METAKR)

    return state
Пример #7
0
    def set_meta_kernel(self, kernel):

        if kernel == self.meta_kernel:
            return

        if self.meta_kernel is not None:
            spiceypy.unload(self.meta_kernel)

        if kernel is not None:
            s3manager.get_meta_kernel(kernel)
            spiceypy.furnsh(kernel)

        self.meta_kernel = kernel
Пример #8
0
def UTC2ET(time, target):
    #converting from UTC time to ephemeris seconds since J2000 -- need leapseconds kernel -- 'kernels/lsk/naif0008.tls'
    #get mission named from target
    mission = getMissionFromTarget(target) 
    #get metakernel
    metakernel = getKernels(mission, target, 'UTC2ET',time) 
    #load kernels from metakernel
    spice.furnsh(metakernel) 
    #convert time from UTC to ET
    ET = spice.str2et(time)
    #unload kernels
    spice.unload(metakernel)
    
    return(ET)
Пример #9
0
def CarringtonLongitude(Date, ut):
    '''
	Get MESSENGER's Carrington longitude
	
	'''

    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    lon = np.zeros(n, dtype='float64')

    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(spk_kernel2)
    sp.furnsh(pck_kernel)

    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    pos, lt = sp.spkpos('MESSENGER', et, 'IAU_SUN', 'NONE', 'SUN')
    pos = np.array(pos)
    lon = np.arctan2(pos.T[1], pos.T[0]) * 180 / np.pi

    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(spk_kernel2)
    sp.unload(pck_kernel)

    return (lon)
Пример #10
0
    def _generate_solar_panel_kernel(self,
                                     observations,
                                     metakernel_file_path,
                                     ck_file_path,
                                     output_folder_path,
                                     extra_time_hours: float = None,
                                     step_size_s: float = None):
        if extra_time_hours is None:
            extra_time_hours = self.juice_config.get_solar_panel_ck_span_days(
            ) * 24.0 / 2
        if step_size_s is None:
            step_size_s = self.juice_config.get_solar_panel_ck_sampling_seconds(
            )
        spp = SolarPanelProcessor("JUICE")
        spy.furnsh(metakernel_file_path)
        spy.furnsh(ck_file_path)

        td = timedelta(hours=extra_time_hours)
        start_time = self._find_first_start_time(observations) - td
        end_time = self._find_last_end_time(observations) + td

        spp.create_panel_ck(
            start_time, end_time, step_size_s,
            os.path.abspath(
                os.path.join(output_folder_path, 'spacecraft',
                             'solar_panel_kernel.ck')))
        spy.unload(ck_file_path)
        spy.unload(metakernel_file_path)

        spacecraft_json_path = os.path.join(output_folder_path, "spacecraft",
                                            "spacecraft",
                                            "JUICE_panel_def.json")
        with open(spacecraft_json_path) as f:
            spacecraft_json = json.load(f)
        during = spacecraft_json["items"][0]
        before = spacecraft_json["items"][1]
        after = spacecraft_json["items"][2]

        def format_time_str(time: datetime) -> str:
            return time.strftime("%Y-%m-%d %H:%M:%S.000 UTC")

        during["startTime"] = format_time_str(start_time)
        during["endTime"] = format_time_str(end_time)
        before["endTime"] = format_time_str(start_time)
        after["startTime"] = format_time_str(end_time)

        with open(spacecraft_json_path, 'w') as json_file:
            json.dump(spacecraft_json, json_file, indent=2)
        return
def f_manage_kernels(kernel_meta):
    
    #Unload all kernels
    spiceypy.unload( kernel_meta )
    #Load the necessary kernels from meta file
    spiceypy.kclear()
    spiceypy.furnsh(kernel_meta)
    spiceypy.furnsh(r'E:\Data Science Projects\Space Science\SpaceScience-P2-SSBandSunWobbling\data\external\_kernels\lsk\naif0012.tls')
    #List loaded kernels
    count = spiceypy.ktotal( 'ALL' ) 
    for i in range(0, count):
        [ file, type, source, handle] = spiceypy.kdata(i, 'ALL');
        print( 'File   {0}'.format(file) )
        print( 'Type   {0}'.format(type) )
        print( 'Source {0}\n'.format(source) )
Пример #12
0
def PosVSO(Date, ut):
    '''
	VEX position in VSO coordinates
	
	'''

    #create the output arrays
    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    #load the relevant kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    VEXspk = ListVenusSPK(Date)
    for vk in VEXspk:
        sp.furnsh(vk)
    sp.furnsh(pck_kernel)
    sp.furnsh(vso_kernel)

    #do each unique date to speed things up
    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    #get the positions for each date/time
    pos, lt = sp.spkpos('VEX', et, 'VENUSVSO', 'NONE', 'VENUS')
    x = pos.T[0]
    y = pos.T[1]
    z = pos.T[2]

    #unload kernels
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    for vk in VEXspk:
        sp.unload(vk)
    sp.unload(pck_kernel)
    sp.unload(vso_kernel)

    return (x, y, z)
Пример #13
0
 def removeKernel(cls, kern, rmDupsOnly=False):
     # Determine number of times kernel is loaded
     nDups = cls.checkDuplicates(kern)
     if rmDupsOnly:
         # only want to remove duplicates
         if nDups > 0:
             # recursively remove
             # NOTE: I wouldn't like to say where in the full kernel last
             # the last one remaining will be
             spice.unload(kern)
             cls.removeKernel(kern, rmDupsOnly=rmDupsOnly)
     else:
         if nDups >= 0:
             # recursively remove
             spice.unload(kern)
             cls.removeKernel(kern)
Пример #14
0
def et2cal(time, format='UTC', support_ker=False, unload=False):
    """
    Converts Ephemeris Time (ET) into UTC or Calendar TDB (CAL) time. Accepts
    a single time or a lists of times. This function assumes that the support
    kernels (meta-kernel or leapseconds kernel) has been loaded.

    :param time: Input ET time
    :type time: Union[float, list]
    :param format: Desired output format; 'UTC' or 'CAL'
    :type format: str
    :param unload: If True it will unload the input meta-kernel
    :type unload: bool
    :return: Output time in 'UTC', 'CAL' or 'TDB'
    :rtype: Union[str, list]
    """
    timlen = 62
    out_list = []

    if support_ker:
        spiceypy.furnsh(support_ker)

    if isinstance(time, float) or isinstance(time, str):
        time = [time]

    for element in time:

        if format == 'UTC':
            out_elm = spiceypy.et2utc(element, 'ISOC', 3)

        elif format == 'CAL':
            out_elm = spiceypy.timout(element, "YYYY-MM-DDTHR:MN:SC.###::TDB",
                                      timlen)
        else:
            out_elm = element

        out_list.append(out_elm)

    if len(out_list) == 1:
        out_time = out_list[0]
    else:
        out_time = out_list

    if unload:
        spiceypy.unload(support_ker)

    return out_time
Пример #15
0
    def computeTimeWidths(self, leapsecondspath=None):
        #note we need SPICE to compute time widths because we have to convert from string ET to seconds-past-J2000
        if not leapsecondspath == None:
            try:
                import spiceypy
            except:
                print('spiceypy not available')
                return

            spiceypy.furnsh(leapsecondspath)
            self.__data__[-1]['timeWidth'] = 0.0
            for recordIndex in range(0, self.getLength() - 1):
                self.__data__[recordIndex]['timeWidth'] = spiceypy.str2et(
                    self.getValue(recordIndex + 1, 'epoch')) - spiceypy.str2et(
                        self.getValue(recordIndex, 'epoch'))

            spiceypy.unload(leapsecondspath)
Пример #16
0
def CarringtonLongitude(Date, ut):

    #create output array
    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    lon = np.zeros(n, dtype='float64')
    if n == 1:
        ut = np.array([ut])

    #load kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    VEXspk = ListVenusSPK(Date)
    for vk in VEXspk:
        sp.furnsh(vk)
    sp.furnsh(pck_kernel)
    sp.furnsh(hci_kernel)

    #do each unique date to speed things up
    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    #get the longitudes
    pos, lt = sp.spkpos('VEX', et, 'IAU_SUN', 'NONE', 'SUN')
    pos = np.array(pos)
    lon = np.arctan2(pos.T[1], pos.T[0]) * 180 / np.pi

    #unload kernels
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    for vk in VEXspk:
        sp.unload(vk)
    sp.unload(pck_kernel)
    sp.unload(hci_kernel)

    return lon
Пример #17
0
def PosHAE(date, ut):
    '''
	Messenger position in HAE coords (km)
	
	'''

    n = np.size(ut)

    if np.size(ut) == 1:
        ut = np.array([ut])
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(spk_kernel2)
    sp.furnsh(pck_kernel)
    sp.furnsh(hci_kernel)

    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    pos, lt = sp.spkpos('MESSENGER', et, 'ECLIPDATE', 'NONE', 'SUN')
    x = pos.T[0]
    y = pos.T[1]
    z = pos.T[2]
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(spk_kernel2)
    sp.unload(pck_kernel)
    sp.unload(hci_kernel)

    return (x, y, z)
Пример #18
0
def PosMSM(Date, ut):
    '''
	Messenger position in MSM coords (km)
	
	'''
    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(spk_kernel2)
    sp.furnsh(pck_kernel)
    sp.furnsh(mso_kernel)

    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    for i in range(0, n):
        pos, lt = sp.spkpos('MESSENGER', et[i], 'MERCURYMSO', 'NONE',
                            'MERCURY')
        x[i] = pos[0]
        y[i] = pos[1]
        z[i] = pos[2] - 478.0

    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(spk_kernel2)
    sp.unload(pck_kernel)
    sp.unload(mso_kernel)

    return (x, y, z)
Пример #19
0
def PosHCIDates(Date0, Date1):
    '''
	Get the postion of Mercury in HCI coordinates between two dates
	
	Inputs
	======
	Date0 : int
		Start date in format yyyymmdd
	Date1 : int
		End date
		
	Returns
	=======
	x : float64
		x-position in HCI coords (km)
	y : float64
		y-position in HCI coords (km)
	z : float64
		z-position in HCI coords (km)
	'''

    #list the dates
    dates = ListDates(Date0, Date1)
    n = dates.size

    #load kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(pck_kernel)
    sp.furnsh(hci_kernel)

    #get the ephemeris times
    et = utc2et(dates, np.zeros(n, dtype='float32'))

    #positions
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')
    for i in range(0, n):
        pos, lt = sp.spkpos('MERCURY', et[i], 'HCI', 'NONE', 'SUN')
        x[i] = pos[0]
        y[i] = pos[1]
        z[i] = pos[2]

    #unload kernels
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(pck_kernel)
    sp.unload(hci_kernel)

    return (x, y, z)
Пример #20
0
def HAEtoHCI(Date, ut, xi, yi, zi):
    '''
	Convert HAE to HCI coordinates
	
	'''

    #create some arrays
    n = np.size(xi)

    if np.size(ut) == 1:
        ut = np.zeros(n, dtype='float32') + ut
    if np.size(xi) == 1:
        xi = np.array([xi])
        yi = np.array([yi])
        zi = np.array([zi])
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    #load kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(pck_kernel)
    sp.furnsh(hci_kernel)

    #do each unique date to speed things up
    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    for i in range(0, n):
        rot = sp.pxform('ECLIPDATE', 'HCI', et[i])
        x[i], y[i], z[i] = np.sum(rot * np.array([xi[i], yi[i], zi[i]]),
                                  axis=1)

    #free kernels
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(pck_kernel)
    sp.unload(hci_kernel)

    return (x, y, z)
Пример #21
0
def mjd20002et(mjd2000, support_ker=False, unload=False):
    """
    Given a date in MJD2000 (Modified Julian Date 2000) returns the Ephemeris
    time (ET which in SPICE is equivalent to TDB). Accepts a single time entry
    or a list of times.

    :param mjd2000: Date in MJD200
    :type mjd2000: Union[float, list]

    :param support_ker: Support kernels required to run the function. At least it should be a leapseconds kernel (LSK) and optionally a meta-kernel (MK)
    :type support_ker: Union[str, list]
    :param unload: If True it will unload the input support kernel
    :type unload: bool
    :return: Date in ET/TDB
    :rtype: Union[float, list]
    """
    tdb = []

    if support_ker:
        spiceypy.furnsh(support_ker)

    if not isinstance(mjd2000, list):
        mjd2000 = [mjd2000]

    for time in mjd2000:

        mjd2000 = float(time)
        mjd = mjd2000 + 51544
        jd = mjd + 2400000.5
        jd = str(jd) + ' JD'
        tdb.append(spiceypy.str2et(jd))

    if unload:
        spiceypy.unload(support_ker)

    if len(tdb) == 1:
        return tdb[0]
    else:
        return tdb
Пример #22
0
def PosIAU_SUN(Date,ut):
	'''
	Get Venus' position in IAU_SUN coordinates, wher Z is along the 
	Sun's rotational axis, X and Y rotate with the Sun.
	
	'''
	#get output arrays
	n = np.size(ut)
	if np.size(ut) == 1:
		ut = np.array([ut])
	et = np.zeros((n,),dtype='float64')
	x = np.zeros(n,dtype='float64')
	y = np.zeros(n,dtype='float64')
	z = np.zeros(n,dtype='float64')
		
	#load kernels
	sp.furnsh(lsk_path)
	sp.furnsh(spk_kernel)
	sp.furnsh(pck_kernel)
	sp.furnsh(hci_kernel)	
	
	#do each unique date to speed things up
	if np.size(Date) == 1 :
		et[0] = utc2et(Date,0.0)
		et = et[0] + ut*3600.0
	else:
		ud = np.unique(Date)
		for i in range(0,ud.size):
			use = np.where(Date == ud[i])[0]
			tmp = utc2et(ud[i],0.0)
			et[use] = tmp + ut[use]*3600.0

	#get the positions
	pos,lt = sp.spkpos('VENUS',et,'IAU_SUN','NONE','SUN')
	pos = np.array(pos)
	x = pos.T[0]
	y = pos.T[1]
	z = pos.T[2]	
	
	#unload kernels	
	sp.unload(lsk_path)
	sp.unload(spk_kernel)
	sp.unload(pck_kernel)
	sp.unload(hci_kernel)

	return (x,y,z)
Пример #23
0
def PosHCI(Date,ut):
	'''
	HCI position at set times
	
	'''	

	#get output arrays
	n = np.size(ut)
	if np.size(ut) == 1:
		ut = np.array([ut])
	et = np.zeros((n,),dtype='float64')
	x = np.zeros(n,dtype='float64')
	y = np.zeros(n,dtype='float64')
	z = np.zeros(n,dtype='float64')
		
	#load kernels
	sp.furnsh(lsk_path)
	sp.furnsh(spk_kernel)
	sp.furnsh(pck_kernel)
	sp.furnsh(hci_kernel)	
	
	#do each unique date to speed things up
	if np.size(Date) == 1 :
		et[0] = utc2et(Date,0.0)
		et = et[0] + ut*3600.0
	else:
		ud = np.unique(Date)
		for i in range(0,ud.size):
			use = np.where(Date == ud[i])[0]
			tmp = utc2et(ud[i],0.0)
			et[use] = tmp + ut[use]*3600.0
			
	#get the positions
	pos,lt = sp.spkpos('VENUS',et,'HCI','NONE','SUN')
	pos = np.array(pos)
	x = pos.T[0]
	y = pos.T[1]
	z = pos.T[2]	
	
	#unload kernels		
	sp.unload(lsk_path)
	sp.unload(spk_kernel)
	sp.unload(pck_kernel)
	sp.unload(hci_kernel)

	return (x,y,z)
       
# =============================================================================
# End of function
# =============================================================================

# =============================================================================
# Run the function if requested
# When run, this program regenerates all of the backplanes
# It uses multiprocessing to run these in parallel    
# =============================================================================

#%%%        
if (__name__ == '__main__'):
    
    file_tm = 'kernels_kem_prime.tm'
    sp.unload(file_tm)
    sp.furnsh(file_tm)

 # NB: This would be an ideal candidate for multi-processing 
 # NB: Done!
        
    # Set paramters here
    
    do_tuna      = False
    digit_filter = None
    
    # Run code here

    digit_filters = ['12', '34', '56', '78', '90']
    frames        = ['2014_MU69_SUNFLOWER_ROT']  #, '2014_MU69_TUNACAN_ROT']
    
Пример #25
0
def unload(file_name):
    mk_path = path(file_name)
    spiceypy.unload(mk_path)
Пример #26
0
def OrientationSUN(date, ut):

    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    ck = 'msgr_{:04d}_v*.bc'

    yymm = (Date // 100) % 10000
    uyymm = np.unique(yymm)
    nck = np.size(uyymm)
    ck_kernel = []
    for i in range(0, nck):
        files = FileSearch(ck_path, ck.format(uyymm[i]))
        if files.size > 0:
            ck_kernel.append(ck_path + files[-1])
    nck = np.size(ck_kernel)

    #load kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(spk_kernel2)
    sp.furnsh(sclk_kernel)
    sp.furnsh(pck_kernel)
    sp.furnsh(mso_kernel)
    sp.furnsh(ik_kernel)
    sp.furnsh(fk_kernel)
    for i in range(0, nck):
        sp.furnsh(ck_kernel[i])

    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    #m = sp.pxform('J2000','MSGR_SPACECRAFT',et[0])
    for i in range(0, n):
        pos, lt = sp.spkpos('SUN', et[i], 'MSGR_SPACECRAFT', 'NONE',
                            'MESSENGER')
        x[i] = pos[0]
        y[i] = pos[1]
        z[i] = pos[2]

    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(spk_kernel2)
    sp.unload(sclk_kernel)
    sp.unload(pck_kernel)
    sp.unload(mso_kernel)
    sp.unload(ik_kernel)
    sp.unload(fk_kernel)
    for i in range(0, nck):
        sp.unload(ck_kernel[i])

    return (x, y, z)
Пример #27
0
def NSOrientationMSO(Date, ut):
    '''
	Get the orientation of MESSENGER NS?
	'''

    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    ck = 'msgr_{:04d}_v*.bc'

    yymm = (Date // 100) % 10000
    uyymm = np.unique(yymm)
    nck = np.size(uyymm)
    ck_kernel = []
    for i in range(0, nck):
        files = FileSearch(ck_path, ck.format(uyymm[i]))
        if files.size > 0:
            ck_kernel.append(ck_path + files[-1])
    nck = np.size(ck_kernel)

    #load kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(spk_kernel2)
    sp.furnsh(sclk_kernel)
    sp.furnsh(pck_kernel)
    sp.furnsh(mso_kernel)
    sp.furnsh(ik_kernel)
    sp.furnsh(fk_kernel)
    for i in range(0, nck):
        sp.furnsh(ck_kernel[i])

    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    #calculate positions
    m = sp.pxform('MERCURYMSO', 'MSGR_GRNS_NS', et)

    #unload kernels
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(spk_kernel2)
    sp.unload(sclk_kernel)
    sp.unload(pck_kernel)
    sp.unload(mso_kernel)
    sp.unload(ik_kernel)
    sp.unload(fk_kernel)
    for i in range(0, nck):
        sp.unload(ck_kernel[i])

    return m
Пример #28
0
 def unloadSpiceFiles(self):
     # unload spice files
     for spiceFile in self.loadedSpiceFiles:
         spice.unload(spiceFile)
     spice.kclear()
Пример #29
0
def MMOPosMSM(Date, ut):
    '''
	Position of MMO in MSM coords
	
	'''

    #create the output arrays
    if np.size(np.shape(ut)) == 0:
        ut = np.array([ut])
    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    #load kernels
    sp.furnsh(lsk_path)
    sp.furnsh(sclk_kernel)
    sp.furnsh(de430_kernel)
    sp.furnsh(mpo_kernel)
    sp.furnsh(pck_kernel)
    sp.furnsh(mso_kernel)

    #do each unique date to speed things up
    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    #get positions
    pos, lt = sp.spkpos('MMO', et, 'MERCURYMSO', 'NONE', 'MERCURY')
    x = pos.T[0]
    y = pos.T[1]
    z = pos.T[2] - 478.0

    #unload kernels
    sp.unload(lsk_path)
    sp.unload(sclk_kernel)
    sp.unload(de430_kernel)
    sp.unload(mpo_kernel)
    sp.unload(pck_kernel)
    sp.unload(mso_kernel)

    return (x, y, z)
Пример #30
0
def OrientationMSO(Date, ut, Verbose=False):
    '''
	This should return the direction in which MESSENGER is oriented
	
	no idea if this is right
	
	'''

    n = np.size(ut)
    et = np.zeros((n, ), dtype='float64')
    x = np.zeros(n, dtype='float64')
    y = np.zeros(n, dtype='float64')
    z = np.zeros(n, dtype='float64')

    #find the ck kernels
    ck = 'msgr_{:04d}_v*.bc'

    yymm = (Date // 100) % 10000
    uyymm = np.unique(yymm)
    nck = np.size(uyymm)
    ck_kernel = []
    for i in range(0, nck):
        files = FileSearch(ck_path, ck.format(uyymm[i]))
        if files.size > 0:
            ck_kernel.append(ck_path + files[-1])
    nck = np.size(ck_kernel)

    #load all the kernels
    sp.furnsh(lsk_path)
    sp.furnsh(spk_kernel)
    sp.furnsh(spk_kernel2)
    sp.furnsh(sclk_kernel)
    sp.furnsh(pck_kernel)
    sp.furnsh(mso_kernel)
    sp.furnsh(ik_kernel)
    sp.furnsh(fk_kernel)
    for i in range(0, nck):
        sp.furnsh(ck_kernel[i])

    if np.size(Date) == 1:
        et[0] = utc2et(Date, 0.0)
        et = et[0] + ut * 3600.0
    else:
        ud = np.unique(Date)
        for i in range(0, ud.size):
            use = np.where(Date == ud[i])[0]
            tmp = utc2et(ud[i], 0.0)
            et[use] = tmp + ut[use] * 3600.0

    #get the positions
    if Verbose:
        for i in range(0, n):
            print('\rVector {0} of {1}'.format(i + 1, n), end='')
            pos, lt = sp.spkpos('MERCURY', et[i], 'MSGR_SPACECRAFT', 'NONE',
                                'MESSENGER')
            x[i] = pos[0]
            y[i] = pos[1]
            z[i] = pos[2]
        print()
    else:
        for i in range(0, n):
            pos, lt = sp.spkpos('MERCURY', et[i], 'MSGR_SPACECRAFT', 'NONE',
                                'MESSENGER')
            x[i] = pos[0]
            y[i] = pos[1]
            z[i] = pos[2]

    #unload kernels
    sp.unload(lsk_path)
    sp.unload(spk_kernel)
    sp.unload(spk_kernel2)
    sp.unload(sclk_kernel)
    sp.unload(pck_kernel)
    sp.unload(mso_kernel)
    sp.unload(ik_kernel)
    sp.unload(fk_kernel)
    for i in range(0, nck):
        sp.unload(ck_kernel[i])

    return (x, y, z)
Пример #31
0
def nh_ort_track4_flyby(dir_in=None, dir_out=None, name_trajectory = 'prime'):

    #%%%
    

#    dir_in = '/Users/throop/
#    dir_in = '/Users/throop/data/ORT4/throop/ort4_bc3_10cbr2_dph/'
    
    stretch_percent = 99
    stretch = astropy.visualization.PercentileInterval(stretch_percent)

#    dir_data = os.path.expanduser('~/Data/')
    
    # dir_in git
    do_compress = False   # Do we use .gzip compression on the Track-4 input grids?
                          # If we used compression on the track4_calibrate routine, we must use it here too.
    
#    dir_track4 = os.path.join(dir_data, name_ort, 'throop', 'track4')
    
    if do_compress:
        files = glob.glob(os.path.join(dir_in, '*.grid4d.gz'))
    
    else:
        files = glob.glob(os.path.join(dir_in, '*.grid4d'))
        files = glob.glob(os.path.join(dir_in, '*.dust.pkl'))

    # Alphabetize file list
    
    files = sorted(files)

    plt.set_cmap('plasma')

    utc_ca = '2019 1 Jan 05:33:00'
    dt_before = 1*u.hour
    dt_after  = 1*u.hour
    
#    area_sc = (1*u.m)**2

    frame = '2014_MU69_SUNFLOWER_ROT'
    
    name_target = 'MU69'
    origin = 'lower'   # Required plotting order for imshow
    
    name_observer = 'New Horizons'
    
    hbt.figsize((8,6))
    hbt.set_fontsize(12)

    dt = 1*u.s         # Sampling time through the flyby. Astropy units.

    # Create an output table, Astropy format
    
    t = Table(names = ['trajectory', 'speed', 'q_dust', 'albedo', 'rho',
                       'tau_max', 'tau_typical', 'iof_max', 'iof_typical'],
              dtype = ['U30', float, float, float, float, 
                       float, float, float, float]  )
    
    # Start up SPICE if needed. Unload old kernels just as a safety precaution.
    
    sp.unload('kernels_kem_prime.tm')
    sp.unload('kernels_kem_alternate.tm')
    
    sp.furnsh(f'kernels_kem_{name_trajectory}.tm')
    
    do_short = False
    
    if do_short:
        files = files[0:4]
             
        i=3
        file = files[i]

    num_files = len(files)
    name_run = dir_out.split('/')[-2]
        
#%%%    
    for i,file in enumerate(files):
        
#%%%       
        print(f'Starting file {i}/{len(files)}')
              
        grid = nh_ort_track4_grid(file)    # Load the grid from disk. Uses gzip, so it is quite slow (10 sec/file)
        print(f'Loading file {file}')
         
    # Load the trajectory parameters

        et_ca = int( sp.utc2et(utc_ca) )  # Force this to be an integer, just to make output cleaner.
        
        et_start = et_ca - dt_before.to('s').value
        et_end   = et_ca + dt_after.to('s').value
                        
        grid.frame       = frame
        grid.name_target = name_target
        grid.name_trajectory = name_trajectory
        
        # And call the method to fly through it!
        # The returned density values etc are available within the instance variables, not returned explicitly.

        grid.fly_trajectory(name_observer, et_start, et_end, dt)
 
        # If the first time thru loop, make plot of our path through the system
     
        do_plots_geometry = True
        
        if (do_plots_geometry and (i==0)):
            
            grid.plot_trajectory_geometry()

        # Make slice plots thru the grid
        
        do_plot_slices_xyz = False

        if do_plot_slices_xyz:
            hbt.fontsize(8)
            hbt.figsize((20,5))
            grid.plot(axis_sum=0)
            grid.plot(axis_sum=1)
            grid.plot(axis_sum=2)
            
            hbt.fontsize(10)
        
        # Make a plot of optical depth
        
        do_plot_tau = True
        if do_plot_tau:
            grid.plot_tau()

# =============================================================================
# Make some plots of count rate vs. time!
# =============================================================================
                    
        # Make a plot of the instantaneous count rate

        hbt.figsize((10,15))

        # Make a plot of the actual density that we give to Doug Mehoke
        
        # Define a list of colors. This is so we can use colors= argument to set
        # a marker to show grain size, rather than let plot() auto-assign.
        
#        colors = plt.rcParams['axes.prop_cycle'].by_key()['color']  # This is the default color iterator.
        colors = ['antiquewhite',
                  'tomato', 
                  'blueviolet',
                  'skyblue',
                  'gold',
                  'darkcyan',
                  'thistle',
                  'olive',
                  'red',
                  'sienna',
                  'deepskyblue',
                  'lightsalmon',
                  'pink',
                  ]
                  # 'aqua']
                  
#                  'antiquewhite4', 'aqua', 'aquamarine4', 'black', 'blue', 'blueviolet', 
#                  'brown1', 'chartreuse1', 'darkgreen', 'darkorange1', 'dodgerblue1', 'lightpink', 'magenta']
        
        # Make a plot of dust number density. This is straight out of the grid, and for comparison with MRS.
        
        vals_fiducial = [1e-10, 1e-8, 1e-6,1e-4, 1e-2, 1e-0]
        
        plt.subplot(3,1,1)
        for j,s in enumerate(grid.s):
            plt.plot(grid.delta_et_t, grid.number_t[j],
                     label = 's={:.2f} mm'.format(s),
                     color=colors[j])
        plt.legend()
        plt.title('Dust number density'.format(grid.area_sc))
        plt.xlabel('ET from C/A')
        plt.yscale('log')
        plt.ylim((1e-10, 1e2))  # Match to MRS.
        plt.axvline(0, color='black', alpha=0.05)
        plt.ylabel(r'Dust,, # km$^{-3}$')
                   
        for val in vals_fiducial:
            plt.axhline(val, color='black', alpha=0.05)

        # Make a plot of impact rate. This assumes a s/c area.
        
        plt.subplot(3,1,2)
        for j,s in enumerate(grid.s):   # 's' is dust size
            plt.plot(grid.delta_et_t, grid.number_sc_t[j],
                     label = f's={s:.2f} mm',
                     color=colors[j])
        plt.title('Impact rate, A={}'.format(grid.area_sc))
        plt.yscale('log')    
        plt.xlabel('ET from C/A')
        plt.legend()
        plt.ylabel(r'Dust, # Impacts sec$^{{-1}}$')

        # Make a plot of the cumulative count rate. Mark grain sizes here too.
        
        plt.subplot(3,1,3)
        for j,s in enumerate(grid.s):                                             # Loop over size
            plt.plot(grid.delta_et_t, grid.number_sc_cum_t[j],                    # Main plot line
                     label = 's={:.2f} mm'.format(s), color=colors[j])
            plt.plot([grid.delta_et_t[-1]], [grid.number_sc_cum_t[j,-1].value],   # Circle to indicate grain size
                     markersize=(7-j)*2, marker = 'o',                            # Use same color as prev line! 
                     color=colors[j])


        hbt.figsize(5,5)
        plt.legend()
        plt.title('Number of impacts (cumulative), A={}'.format(grid.area_sc))
        plt.xlabel('ET from C/A')
        plt.yscale('log')
        plt.ylabel('# of Impacts')
        plt.axhline(y = 1, linestyle = '--', alpha = 0.1)    

        plt.tight_layout()
        
        plt.show()
        
        # Make a plot of size distibution. 
        # Make two curves: one for n(r) for the entire grid, and one for n(r) that hits s/c
        
        # Now add an entry to the table. This is a table that lists all of the results --
        #     e.g., max_tau, count rate etc
        # One line per grid.

        t.add_row(vals=[grid.name_trajectory, grid.speed, grid.q, grid.albedo, grid.rho, 
                        grid.tau_max, grid.tau_typ,
                        grid.iof_max, grid.iof_typ])
                                        
        # Get size dist along path
         
        number_path = grid.number_sc_cum_t[:,-1].value
        
        # Take the full particle grid, and sum along all spatial axes, leaving just the size axis left.
        
        number_grid = np.sum(np.sum(np.sum(grid.density, axis=1), axis=1), axis=1)
        
        # Normalize the size dists both
        number_grid = hbt.normalize(number_grid)
        number_path = hbt.normalize(number_path)
        
        plt.plot(grid.s, number_path, label = 'Along s/c path')
        plt.plot(grid.s, number_grid, label = 'In grid, total')
        plt.yscale('log')
        plt.xscale('log')
        plt.ylim( (hbt.minval(np.array([number_grid, number_path]))/2, 1) )
        plt.xlabel('Radius [mm]')
        plt.ylabel('Particle number [arbitrary]')
        plt.legend(loc = 'lower right')
        plt.show()

        # Output the dust population for this run to a file. This is the file that Doug Mehoke will read.
        
        grid.output_trajectory(name_run=name_run, do_positions=False, dir_out=dir_out)
    
        print('---')
                        

#%%%        
        
    # Print the table
    
    t.pprint(max_width=-1)
    
    # Save the table as output
    
    file_out = os.path.join(dir_out, f'nh_{name_trajectory}_track4_table.pkl')
    
    lun = open(file_out, 'wb')
    pickle.dump(t,lun)
    lun.close()
    print(f'Wrote: {file_out}')
    
#%%%    

    # Now that all files have been created, compress results into an archive (.tar.gz) for Doug Mehoke
    
    inits_track4    = 'hbt'
    
#    if 'hamilton' in files[0]:
#        inits_track3 = 'dph'
#    if 'kauf' in files[0]:
#        inits_track3 = 'dk'
        
    file_out = f'{name_trajectory}_{name_run}_{inits_track4}_n{num_files}.tgz'
    
    str = f'cd {dir_out}; tar -czf {file_out} *{name_trajectory}*.dust'
    
    _ = subprocess.Popen(str, shell=True)
    
    print(str)
    print(f'Wrote: {dir_out}/{file_out}')
Пример #32
0
 def tearDown(self):
     spice.unload(self.updated_kernels)
     for kern in self.binary_kernels:
         os.remove(kern)
Пример #33
0
def nh_ort_find_ring_pole():
    
    file_superstack = '/Users/throop/Data/ORT4/superstack_ORT4_z4_mean_wcs_sm_hbt.fits'
    
    file_tm = 'kernels_kem_prime.tm'
    sp.unload(file_tm)
    sp.furnsh(file_tm)
    
    f = fits.open(file_superstack)
    
    img = f[0].data
    
#    plt.imshow(stretch(img))
#    plt.show()
    
    wcs = WCS(file) 
    
    num_pts = 200
    
    ra_pole   = 275 * hbt.d2r
#    dec_pole  = -56 * hbt.d2r
    dec_pole  = 13 * hbt.d2r

    radius_ring = 9000  # Radius in km

    vec_pole_j2k = sp.radrec(1, ra_pole, dec_pole)
    
    et = float(f[0].header['SPCSCET'])
    utc = sp.et2utc(et, 'C', 0)
    
    # Get position from NH to UT
    
    (st, lt) = sp.spkezr('MU69', et, 'J2000', 'LT', 'New Horizons')

    vec_nh_ut = st[0:3]
 
     # Get position from Sun, to NH
    
    (st, lt) = sp.spkezr('New Horizons', et, 'J2000', 'LT', 'Sun')
    
    vec_sun_nh = st[0:3]

    vec_sun_ut = vec_sun_nh + vec_nh_ut
    
    # Define a 'ring plane', based on a pole vector, and a point
    # This ring plane should be in J2K space -- that is, centered on Sun.
    
    plane_ring = sp.nvp2pl(vec_pole_j2k, vec_sun_ut)  # Pole position is variable. Point is UT in J2K.
 
    # Get the point and spanning vectors that define this plane
    
    # XXX for some reason, these values from pl2psv do not depend on value of vec_pol_j2k
    
    (pt_pl, vec1_pl, vec2_pl) = sp.pl2psv(plane_ring)

    # Now take a bunch of linear combinations of these spanning vectors
    
    # Plot UT's position on the plot
    
    (st, lt) = sp.spkezr('MU69', et, 'J2000', 'LT', 'New Horizons')

    (_, ra, dec) = sp.recrad(vec_nh_ut)
        
    (x, y) = wcs.wcs_world2pix(ra*hbt.r2d, dec*hbt.r2d, 0)
       
#    plt.plot(x, y, marker = 'o', ms = 10, alpha=0.3, color='purple')
    
    # Set an offset to the WCS values, in case UT is not in the right position (ie, not centered properly)
    
    dy = 0 # Large value moves up
    dx = 0

    # Draw the ring image
    
    plt.imshow(stretch(img), origin='lower')
    
    # Calculate and draw all of the ring points
        
    for i in range(num_pts):
        
        angle_azimuth = 2*math.pi * (i / num_pts)   # Put in range 0 .. 2 pi
        vec_i = vec1_pl * math.sin(angle_azimuth) + vec2_pl * math.cos(angle_azimuth)
        vec_i = vec_i * radius_ring
        
        # Now get the point in space, J2K
        
        pt_ring_i_j2k = vec_i + vec_sun_ut
        
        vec_sun_ring_i = pt_ring_i_j2k
        
        vec_nh_ring_i = vec_sun_ring_i- vec_sun_nh
        
        # 
        (_, ra_i, dec_i) = sp.recrad(vec_nh_ring_i)
        
        (x, y) = wcs.wcs_world2pix(ra_i*hbt.r2d, dec_i*hbt.r2d, 0)
        
        plt.plot(x+dx, y+dy, marker = 'o', ms = 1, color='red', alpha = 0.15)
#        print(f'{i}, {ra_i*hbt.r2d}, {dec_i*hbt.r2d}, {x}, {y}')
    
    plt.title(f'ORT4 Superstack, Ring Pole = ({ra_pole*hbt.r2d},{dec_pole*hbt.r2d}) deg')    
    plt.show()
    
    return