net.load_simple_network(restore_path + "actor.pth") # net.load_replay_buffer(restore_path+"replay.pkl") # 因为文件太大了,我删掉了默认的值 net.load_norm(restore_path + "norm.pkl") trainer(net, env, args) if __name__ == '__main__': # take the configuration for the HER # os.environ['OMP_NUM_THREADS'] = '1' # os.environ['MKL_NUM_THREADS'] = '1' # os.environ['IN_MPI'] = '1' # get the params args = get_args() os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id) mpi_fork(args.cpu) from algos.tf1.td3_sp.TD3_per_her import TD3 from algos.tf1.ddpg_sp.DDPG_per_her import DDPG from algos.tf1.sac_sp.SAC_per_her import SAC from algos.tf1.sac_auto.sac_auto_per_her import SAC_AUTO from algos.pytorch.td3_sp.td3_per_her import TD3Torch from algos.pytorch.ddpg_sp.ddpg_per_her import DDPGTorch from algos.pytorch.sac_sp.sac_per_her import SACTorch RL_list = [TD3, DDPG, SAC, SAC_AUTO, TD3Torch, DDPGTorch, SACTorch] [ launch(net=net, args=args) for net in RL_list if net.__name__ == args.RL_name ]
def thunk_plus(): # Fork into multiple processes mpi_fork(cpu_num) # Run thunk thunk(thunk_params_dict_list)