Пример #1
0
 def test_10cplx(self):
     N = 64
     M = 4
     Nd = 8
     D = np.random.randn(Nd, Nd, M) + 1j * np.random.randn(Nd, Nd, M)
     X0 = np.zeros((N, N, M)) + 1j * np.zeros((N, N, M))
     xr = np.random.randn(N, N, M)
     xp = np.abs(xr) > 3
     X0[xp] = (np.random.randn(X0[xp].size) +
               1j * np.random.randn(X0[xp].size))
     S = np.sum(fftconv(D, X0, axes=(0, 1)), axis=2)
     lmbda = 1e-4
     rho = 1e-1
     opt = cbpdn.ConvBPDN.Options({
         'Verbose': False,
         'MaxMainIter': 500,
         'RelStopTol': 1e-3,
         'rho': rho,
         'AutoRho': {
             'Enabled': False
         }
     })
     b = cbpdn.ConvBPDN(D, S, lmbda, opt)
     b.solve()
     X1 = b.Y.squeeze()
     assert rrs(X0, X1) < 5e-5
     Sr = b.reconstruct().squeeze()
     assert rrs(S, Sr) < 1e-4
Пример #2
0
 def test_11(self):
     N = 63
     M = 4
     Nd = 8
     D = np.random.randn(Nd, Nd, M)
     X0 = np.zeros((N, N, M))
     xr = np.random.randn(N, N, M)
     xp = np.abs(xr) > 3
     X0[xp] = np.random.randn(X0[xp].size)
     S = np.sum(sl.ifftn(
         sl.fftn(D, (N, N), (0, 1)) * sl.fftn(X0, None, (0, 1)), None,
         (0, 1)).real,
                axis=2)
     lmbda = 1e-4
     rho = 1e-1
     opt = cbpdn.ConvBPDN.Options({
         'Verbose': False,
         'MaxMainIter': 500,
         'RelStopTol': 1e-3,
         'rho': rho,
         'AutoRho': {
             'Enabled': False
         }
     })
     b = cbpdn.ConvBPDN(D, S, lmbda, opt)
     b.solve()
     X1 = b.Y.squeeze()
     assert sl.rrs(X0, X1) < 5e-5
     Sr = b.reconstruct().squeeze()
     assert sl.rrs(S, Sr) < 1e-4
Пример #3
0
    def xstep(self, S, lmbda, dimK):
        """Solve CSC problem for training data `S`."""

        if self.opt['CUDA_CBPDN']:
            Z = np.stack([
                cucbpdn.cbpdn(self.D.squeeze(), S[..., i], lmbda,
                              self.opt['CBPDN']) for i in range(S.shape[-1])
            ], axis=-2)
            Z = Z.reshape(self.cri.Nv + (1, self.cri.K, self.cri.M,))
            self.Z[:] = np.asarray(Z, dtype=self.dtype)
            self.Zf = sl.rfftn(self.Z, self.cri.Nv, self.cri.axisN)
            self.Sf = sl.rfftn(S.reshape(self.cri.shpS), self.cri.Nv,
                               self.cri.axisN)
            self.xstep_itstat = None
        elif self.opt['PAR_CBPDN']:
            popt = parcbpdn.ParConvBPDN.Options(dict(self.opt['CBPDN']))
            xstep = parcbpdn.ParConvBPDN(self.D.squeeze(), S, lmbda, opt=popt,
                                         dimK=dimK, dimN=self.cri.dimN)
            xstep.solve()
            self.Sf = xstep.Sf
            self.setcoef(xstep.getcoef())
            self.xstep_itstat = xstep.itstat[-1] if len(xstep.itstat) > 0 \
                                                 else None
        else:
            # Create X update object (external representation is expected!)
            xstep = cbpdn.ConvBPDN(self.D.squeeze(), S, lmbda,
                                   self.opt['CBPDN'], dimK=dimK,
                                   dimN=self.cri.dimN)
            xstep.solve()
            self.Sf = xstep.Sf
            self.setcoef(xstep.getcoef())
            self.xstep_itstat = xstep.itstat[-1] if len(xstep.itstat) > 0 \
                                                 else None
Пример #4
0
    def xstep(self, S, lmbda, dimK):
        """Solve CSC problem for training data `S`."""

        if self.opt['CUDA_CBPDN']:
            Z = cuda.cbpdn(self.D.squeeze(), S[..., 0], lmbda,
                           self.opt['CBPDN'])
            Z = Z.reshape(self.cri.Nv + (
                1,
                1,
                self.cri.M,
            ))
            self.Z[:] = np.asarray(Z, dtype=self.dtype)
            self.Zf = sl.rfftn(self.Z, self.cri.Nv, self.cri.axisN)
            self.Sf = sl.rfftn(S.reshape(self.cri.shpS), self.cri.Nv,
                               self.cri.axisN)
            self.xstep_itstat = None
        else:
            # Create X update object (external representation is expected!)
            xstep = cbpdn.ConvBPDN(self.D.squeeze(),
                                   S,
                                   lmbda,
                                   self.opt['CBPDN'],
                                   dimK=dimK,
                                   dimN=self.cri.dimN)
            xstep.solve()
            self.Sf = xstep.Sf
            self.setcoef(xstep.getcoef())
            self.xstep_itstat = xstep.itstat[-1] if xstep.itstat else None
Пример #5
0
 def test_22(self):
     N = 32
     M = 4
     Nd = 8
     D = np.random.randn(Nd, Nd, M)
     D /= np.sqrt(np.sum(D**2, axis=(0, 1)))
     X0 = np.zeros((N, N, M))
     xr = np.random.randn(N, N, M)
     xp = np.abs(xr) > 3
     X0[xp] = np.random.randn(X0[xp].size)
     S = np.sum(sl.fftconv(D, X0), axis=2)
     lmbda = 1e-3
     opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 500,
                      'RelStopTol': 1e-5, 'rho': 5e-1,
                      'AutoRho': {'Enabled': False}})
     bp = cbpdn.ConvBPDN(D, S, lmbda, opt)
     Xp = bp.solve()
     epsilon = np.linalg.norm(bp.reconstruct(Xp).squeeze() - S)
     opt = cbpdn.ConvMinL1InL2Ball.Options({'Verbose': False,
                               'MaxMainIter': 500, 'RelStopTol': 1e-5,
                               'rho': 2e2, 'RelaxParam': 1.0,
                               'AutoRho': {'Enabled': False}})
     bc = cbpdn.ConvMinL1InL2Ball(D, S, epsilon=epsilon, opt=opt)
     Xc = bc.solve()
     assert np.linalg.norm(Xp - Xc) / np.linalg.norm(Xp) < 1e-3
     assert(np.abs(np.linalg.norm(Xp.ravel(), 1) -
                   np.linalg.norm(Xc.ravel(), 1)) < 1e-3)
def learn_codes(signal, atom_dictionary, penalty=PENALTY):
    """Return the sparse codes"""
    opt_sc = get_opt_sc()
    return (
        cbpdn.ConvBPDN(
            D=atom_dictionary,  # learned dictionary
            S=atleast_2d(signal),  # signal at hand
            lmbda=penalty,  # sparsity penalty
            opt=opt_sc,  # options for the optimizations
        ).solve().squeeze())
Пример #7
0
 def xinit(self, S):
     init = cbpdn.ConvBPDN(self.getdict().squeeze(), S, self.lmbda,
                           self.opt['CBPDN'])
     init.solve()
     # (H, W, 1, K, M)
     X = init.getcoef()
     assert X.shape[2] == 1
     X = X.reshape(-1, X.shape[-2], X.shape[-1])
     X = X.transpose(1, 2, 0)
     return X
Пример #8
0
 def test_01(self):
     N = 16
     Nd = 5
     Cs = 3
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N, Cs)
     lmbda = 1e-1
     b = cbpdn.ConvBPDN(D, s, lmbda, dimK=0)
     assert b.cri.dimC == 1
     assert b.cri.dimK == 0
Пример #9
0
 def test_03(self):
     N = 16
     Nd = 5
     Cd = 3
     M = 4
     D = np.random.randn(Nd, Nd, Cd, M)
     s = np.random.randn(N, N, Cd)
     lmbda = 1e-1
     b = cbpdn.ConvBPDN(D, s, lmbda)
     assert b.cri.dimC == 1
     assert b.cri.dimK == 0
Пример #10
0
 def test_05(self):
     N = 16
     Nd = 5
     K = 2
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N, K)
     lmbda = 1e-1
     b = cbpdn.ConvBPDN(D, s, lmbda)
     assert b.cri.dimC == 0
     assert b.cri.dimK == 1
Пример #11
0
 def test_09(self):
     N = 16
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N)
     try:
         b = cbpdn.ConvBPDN(D, s)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
Пример #12
0
 def test_04(self):
     N = 16
     Nd = 5
     Cd = 3
     K = 5
     M = 4
     D = np.random.randn(Nd, Nd, Cd, M)
     s = np.random.randn(N, N, Cd, K)
     lmbda = 1e-1
     b = cbpdn.ConvBPDN(D, s, lmbda)
     assert(b.cri.dimC == 1)
     assert(b.cri.dimK == 1)
Пример #13
0
 def test_02(self):
     N = 16
     Nd = 5
     Cs = 3
     K = 5
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N, Cs, K)
     lmbda = 1e-1
     b = cbpdn.ConvBPDN(D, s, lmbda)
     assert b.cri.dimC == 1
     assert b.cri.dimK == 1
Пример #14
0
 def test_08(self):
     N = 16
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N)
     lmbda = 1e-1
     try:
         b = cbpdn.ConvBPDN(D, s, lmbda)
         b.solve()
     except Exception as e:
         print(e)
         assert (0)
Пример #15
0
 def test_01(self):
     Nr = 32
     Nc = 31
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M).astype(np.float32)
     s = np.random.randn(Nr, Nc).astype(np.float32)
     lmbda = 1e-1
     opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 50,
                              'AutoRho': {'Enabled': False}})
     b = cbpdn.ConvBPDN(D, s, lmbda, opt)
     X1 = b.solve()
     X2 = cucbpdn.cbpdn(D, s, lmbda, opt)
     assert(sm.mse(X1, X2) < 1e-10)
Пример #16
0
 def test_12(self):
     N = 16
     Nd = 5
     Cs = 3
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N, Cs)
     lmbda = 1e-1
     try:
         b = cbpdn.ConvBPDN(D, s, lmbda, dimK=0)
         b.solve()
     except Exception as e:
         print(e)
         assert (0)
Пример #17
0
 def test_34(self):
     N = 16
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N)
     lmbda = 1e-1
     opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 10})
     b = cbpdn.ConvBPDN(D, s, lmbda, opt)
     bp = pickle.dumps(b)
     c = pickle.loads(bp)
     Xb = b.solve()
     Xc = c.solve()
     assert np.linalg.norm(Xb - Xc) == 0.0
Пример #18
0
def calcXr(cri, Dr, Sr, lmbda=5e-2):
    opt = cbpdn.ConvBPDN.Options({
        'Verbose': True,
        'MaxMainIter': 200,
        'RelStopTol': 5e-3,
        'AuxVarObj': False
    })
    b = cbpdn.ConvBPDN(Dr.squeeze(),
                       Sr.squeeze(),
                       lmbda,
                       opt,
                       dimK=cri.dimK,
                       dimN=cri.dimN)
    Xr = b.solve()
    return Xr
Пример #19
0
 def test_08(self):
     N = 16
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N)
     lmbda = 1e-1
     try:
         opt = cbpdn.ConvBPDN.Options({'LinSolveCheck' : True})
         b = cbpdn.ConvBPDN(D, s, lmbda, opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert(0)
     assert(np.array(b.getitstat().XSlvRelRes).max() < 1e-5)
Пример #20
0
    def findHeatmaps(self, img):
        #Opzioni e soluzione dell'algoritmo di CSC
        lmbda = 5e-2
        opt = cbpdn.ConvBPDN.Options({
            'Verbose': True,
            'MaxMainIter': 100,
            'RelStopTol': 5e-3,
            'AuxVarObj': False
        })

        csc = cbpdn.ConvBPDN(self.D, img, lmbda, opt, dimK=0)
        X = csc.solve()
        print(X.shape)
        print("ConvBPDN solve time: %.2fs" % csc.timer.elapsed('solve'))
        #rec = csc.reconstruct().squeeze()
        return X
Пример #21
0
def run_cbpdn(D, sl, sh, lmbda, test_blob=None, opt=None):
    """Run ConvBPDN solver and compute statistics."""
    opt = cbpdn.ConvBPDN.Options(opt)
    if test_blob is None:
        test_blob = sl + sh
    solver = cbpdn.ConvBPDN(D, sh, lmbda, opt=opt)
    solver.solve()
    fnc = solver.getitstat().ObjFun[-1]
    shr = solver.reconstruct().reshape(sl.shape)
    imgr = sl + shr
    psnr = 0.
    for idx in range(sh.shape[-1]):
        psnr += sm.psnr(test_blob[..., idx], imgr[..., idx], rng=1.)
    psnr /= test_blob.shape[-1]
    if _cfg.VERBOSE:
        print('.', end='', flush=True)
    return fnc, psnr
Пример #22
0
 def test_06(self):
     N = 16
     Nd = 5
     K = 2
     M = 4
     D = np.random.randn(Nd, Nd, M)
     s = np.random.randn(N, N, K)
     dt = np.float32
     opt = cbpdn.ConvBPDN.Options({'Verbose' : False, 'MaxMainIter' : 20,
                              'AutoRho' : {'Enabled' : True},
                              'DataType' : dt})
     lmbda = 1e-1
     b = cbpdn.ConvBPDN(D, s, lmbda, opt=opt)
     b.solve()
     assert(b.X.dtype == dt)
     assert(b.Y.dtype == dt)
     assert(b.U.dtype == dt)
Пример #23
0
def recons(name):
    if not os.path.exists(os.path.join(out_path, name)):
        impath = os.path.join(im_path, name)
        im = get_im(impath)
        sl, sh = util.tikhonov_filter(im, fltlmbd, npd)
        opt = cbpdn.ConvBPDN.Options({
            'Verbose': False,
            'MaxMainIter': 200,
            'RelStopTol': 5e-3,
            'AuxVarObj': False
        })
        b = cbpdn.ConvBPDN(basis, sh, lmbda, opt)
        X = b.solve()
        print("ConvBPDN solve time: %.2fs" % b.timer.elapsed('solve'))
        shr = b.reconstruct().squeeze()
        imgr = sl + shr
        cv2.imwrite(os.path.join(out_path, name), 255 * imgr / imgr.max())
    else:
        #    print(name)
        pass
Пример #24
0
    },
    'rho': 4e2 * lmbda
})
opt3 = cbpdntv.ConvBPDNVectorTV.Options({
    'Verbose': True,
    'MaxMainIter': 250,
    'HighMemSolve': True,
    'RelStopTol': 3e-3,
    'AuxVarObj': True,
    'L1Weight': W,
    'AutoRho': {
        'Enabled': False
    },
    'rho': 4e2 * lmbda
})
a = cbpdn.ConvBPDN(D, pad(imgnh), lmbda, opt1, dimK=0)
b = cbpdntv.ConvBPDNScalarTV(D, pad(imgnh), lmbda, mu, opt2)
c = cbpdntv.ConvBPDNVectorTV(D, pad(imgnh), lmbda, mu, opt3)
X1 = a.solve()
X2 = b.solve()
X3 = c.solve()
imgdp1 = a.reconstruct().squeeze()
imgd1 = np.clip(crop(imgdp1) + imgnl, 0, 1)

imgdp2 = b.reconstruct().squeeze()
imgd2 = np.clip(crop(imgdp2) + imgnl, 0, 1)

imgdp3 = c.reconstruct().squeeze()
imgd3 = np.clip(crop(imgdp3) + imgnl, 0, 1)
print("ConvBPDN solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % sm.psnr(img, imgn))
Пример #25
0
S7 = sh7.reshape(N * N)
# S6 = tesS[0].reshape(N*N)
# S7 = tesS[1].reshape(N*N)
TESTS = [S6, S7]

# %%
# d_0 = np.random.normal(-1, 1, (M, d_size, d_size))
from sporco.admm import cbpdn
lmbda = 0.048
opt = cbpdn.ConvBPDN.Options({
    'Verbose': True,
    'MaxMainIter': 500,
    'RelStopTol': 5e-3,
    'AuxVarObj': False
})
b0 = cbpdn.ConvBPDN(D1, sh6, lmbda, opt, dimK=0)
X6 = b0.solve()
b1 = cbpdn.ConvBPDN(D1, sh7, lmbda, opt, dimK=0)
X7 = b1.solve()
shr6 = b0.reconstruct().squeeze()
imgr6 = sl6 + shr6
print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(tesS[0], imgr6))
shr7 = b1.reconstruct().squeeze()
imgr7 = sl7 + shr7
print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(tesS[1], imgr7))
# %%
fig = plot.figure(figsize=(14, 7))
plot.subplot(1, 2, 1)
plot.imview(np.sum(abs(X6), axis=b0.cri.axisM).squeeze(),
            cmap=plot.cm.Blues,
            title='Sparse representation',
Пример #26
0
    'RelStopTol': 5e-3,
    'AuxVarObj': False
})
"""
If GPU available, run CUDA ConvBPDN solver, otherwise run standard Python version.
"""

if cuda.device_count() > 0:
    print('%s GPU found: running CUDA solver' % cuda.device_name())
    tm = util.Timer()
    with sys_pipes(), util.ContextTimer(tm):
        X = cuda.cbpdn(D, sh, lmbda, opt)
    t = tm.elapsed()
else:
    print('GPU not found: running Python solver')
    c = cbpdn.ConvBPDN(D, sh, lmbda, opt)
    X = c.solve().squeeze()
    t = c.timer.elapsed('solve')
print('Solve time: %.2f s' % t)
"""
Reconstruct the image from the sparse representation.
"""

shr = np.sum(spl.fftconv(D, X), axis=2)
imgr = sl + shr
print("Reconstruction PSNR: %.2fdB\n" % spm.psnr(img, imgr))
"""
Display representation and reconstructed image.
"""

fig = plot.figure(figsize=(14, 14))
Пример #27
0
"""
Set :class:`.admm.cbpdn.ConvBPDN` solver options.
"""

lmbda = 5e-2
opt = cbpdn.ConvBPDN.Options({
    'Verbose': True,
    'MaxMainIter': 200,
    'RelStopTol': 5e-3,
    'AuxVarObj': False
})
"""
Initialise and run CSC solver.
"""

b = cbpdn.ConvBPDN(D, sh, lmbda, opt, dimK=0)
X = b.solve()
print("ConvBPDN solve time: %.2fs" % b.timer.elapsed('solve'))
"""
Reconstruct image from sparse representation.
"""

shr = b.reconstruct().squeeze()
imgr = sl + shr
print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(img, imgr))
"""
Display low pass component and sum of absolute values of coefficient maps of highpass component.
"""

fig = plot.figure(figsize=(14, 7))
plot.subplot(1, 2, 1)
Пример #28
0
        'Scaling': 2.0,
        'RsdlTarget': 1.0
    }
})

# Normalise dictionary according to Y update options
D0n = ccmod.getPcn0(optd['ZeroMean'], D0.shape, dimN=2, dimC=1)(D0)

# Update D update options to include initial values for Y and U
optd.update({
    'Y0': ccmod.zpad(ccmod.stdformD(D0n, cri.C, cri.M), cri.Nv),
    'U0': np.zeros(cri.shpD)
})

# Create X update object
xstep = cbpdn.ConvBPDN(D0n, sh, lmbda, optx)

# Create D update object
dstep = ccmod.ConvCnstrMOD(None, sh, D0.shape, optd)

# Create DictLearn object
opt = dictlrn.DictLearn.Options({'Verbose': True, 'MaxMainIter': 100})
d = dictlrn.DictLearn(xstep, dstep, opt)
D1 = d.solve()
print("DictLearn solve time: %.2fs" % d.runtime, "\n")

# Display dictionaries
D1 = D1.squeeze()
fig1 = plot.figure(1, figsize=(14, 7))
plot.subplot(1, 2, 1)
plot.imview(util.tiledict(D0), fgrf=fig1, title='D0')
Пример #29
0
#train_feature = nmf.transform(train_feature);

nmf_p.fit(train_feature_p)
train_feature_p = nmf_p.transform(train_feature_p)

#%%
# テスト用データセットの係数算出
print("### テスト用データセットの係数算出 ###")

test_opt0 = cbpdn.ConvBPDN.Options({
    'Verbose': False,
    'MaxMainIter': opt["Iter"],
    'RelStopTol': 5e-3,
    'AuxVarObj': False
})
b0 = cbpdn.ConvBPDN(np.float32(D0), np.float32(test_data), opt["lmbda"],
                    test_opt0)
print("第1層目:フォワードパスの計算中...")
test_coef0_ = b0.solve()

test_coef0 = np.zeros_like(test_coef0_)
for i in range(opt['test_amount']):
    for j in range(test_coef0_.shape[4]):
        test_coef0[:, :, 0, i, j] = power_spectrum(test_coef0_[:, :, 0, i, j])

#test_feature = test_coef0_.transpose(3, 0, 1, 2, 4).squeeze().reshape(opt["test_amount"], -1);
#test_feature = nmf.transform(test_feature);
test_feature_p = test_coef0.transpose(3, 0, 1, 2, 4).squeeze().reshape(
    opt["test_amount"], -1)
test_feature_p = nmf_p.transform(test_feature_p)

#%%
Пример #30
0
    def solve(self, S):
        self.cri = cr.CSC_ConvRepIndexing(self.getdict(), S,
                                          dimK=self.cri.dimK,
                                          dimN=self.cri.dimN)

        self.timer.start(['solve', 'solve_wo_eval'])

        # Initialize with CBPDN
        self.timer.start('xstep')
        copt = copy.deepcopy(self.opt['CBPDN'])
        if self.opt['OCDL', 'CUCBPDN']:
            X = np.stack([
                cucbpdn.cbpdn(self.getdict(), S[..., i].squeeze(),
                              self.lmbda, opt=copt) for i in range(S.shape[-1])
            ], axis=-2)
            X = np.asarray(X.reshape(self.cri.shpX), dtype=self.dtype)
        elif self.opt['OCDL', 'PARCBPDN']:
            popt = parcbpdn.ParConvBPDN.Options(dict(self.opt['CBPDN']))
            xstep = parcbpdn.ParConvBPDN(self.getdict(), S, self.lmbda,
                                         opt=popt,
                                         nproc=self.opt['OCDL', 'nproc'])
            X = xstep.solve()
            X = np.asarray(X.reshape(self.cri.shpX), dtype=self.dtype)
        else:
            xstep = cbpdn.ConvBPDN(self.getdict(), S, self.lmbda, opt=copt)
            xstep.solve()
            X = np.asarray(xstep.getcoef().reshape(self.cri.shpX),
                           dtype=self.dtype)
        self.timer.stop('xstep')

        # X = np.asarray(xstep.getcoef().reshape(self.cri.shpX), dtype=self.dtype)
        S = np.asarray(S.reshape(self.cri.shpS), dtype=self.dtype)

        # update At and Bt
        # (H, W, 1, K, M) -> (H, W, Hc, Wc, 1, K, M)
        self.timer.start('hessian')
        Xe = self.extend_code(X)
        self.update_At(Xe)
        self.update_Bt(Xe, S)
        self.timer.stop('hessian')
        self.Lmbda = self.dtype.type(self.alpha*self.Lmbda+1)

        # update dictionary with FISTA
        fopt = copy.deepcopy(self.opt['CCMOD'])
        fopt['X0'] = self.D
        if self.opt['OCDL', 'DiminishingTol']:
            if self.opt['OCDL', 'MinTol'] is None:
                min_tol = 0.
            else:
                min_tol = self.opt['OCDL', 'MinTol']
            fopt['RelStopTol'] = max(
                self.dtype.type(self.opt['CCMOD', 'RelStopTol']/(1.+self.j)),
                min_tol
            )
        self.timer.start('dstep')
        dstep = SpatialFISTA(self.At, self.Bt, opt=fopt)
        dstep.solve()
        self.timer.stop('dstep')

        # set dictionary
        self.setdict(dstep.getmin())

        self.timer.stop('solve_wo_eval')
        evl = self.evaluate(S, X)
        self.timer.start('solve_wo_eval')

        t = self.timer.elapsed(self.opt['IterTimer'])
        if self.opt['OCDL', 'CUCBPDN']:
            # this requires a slight modification of dictlrn
            itst = self.isc.iterstats(self.j, t, None, dstep.itstat[-1], evl)
        else:
            itst = self.isc.iterstats(self.j, t, xstep.itstat[-1],
                                      dstep.itstat[-1], evl)
        self.itstat.append(itst)

        if self.opt['Verbose']:
            self.isc.printiterstats(itst)

        self.j += 1

        self.timer.stop(['solve', 'solve_wo_eval'])

        if 0:
            import matplotlib.pyplot as plt
            plt.imshow(su.tiledict(self.getdict().squeeze()))
            plt.show()

        return self.getdict()