Пример #1
0
 def test_02(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     try:
         b = bpdn.BPDN(D, s)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
Пример #2
0
 def test_01(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     lmbda = 1e-1
     try:
         b = bpdn.BPDN(D, s, lmbda)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
Пример #3
0
 def test_10(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     lmbda = 1e-1
     opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 10})
     b = bpdn.BPDN(D, s, lmbda, opt)
     bp = pickle.dumps(b)
     c = pickle.loads(bp)
     Xb = b.solve()
     Xc = c.solve()
     assert np.linalg.norm(Xb - Xc) == 0.0
Пример #4
0
 def test_08(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     dt = np.float64
     opt = bpdn.BPDN.Options({
         'Verbose': False,
         'MaxMainIter': 20,
         'Backtrack': BacktrackStandard(gamma_u=1.1),
         'DataType': dt
     })
     b = bpdn.BPDN(D, s, lmbda=1.0, opt=opt)
     b.solve()
     assert b.X.dtype == dt
     assert b.Y.dtype == dt
Пример #5
0
 def test_05(self):
     N = 8
     M = 8
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     try:
         opt = bpdn.BPDN.Options({
             'FastSolve': True,
             'Verbose': False,
             'MaxMainIter': 10,
             'Backtrack': BacktrackStandard()
         })
         b = bpdn.BPDN(D, s, lmbda=1.0, opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
Пример #6
0
 def test_04(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     try:
         opt = bpdn.BPDN.Options({
             'Verbose': False,
             'MaxMainIter': 50,
             'RelStopTol': 1e-4,
             'Backtrack': BacktrackRobust(maxiter=20)
         })
         b = bpdn.BPDN(D, s, lmbda=1.0, opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
     assert np.array(b.getitstat().Rsdl).min() < 2e-4
Пример #7
0
 def test_14(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     try:
         opt = bpdn.BPDN.Options({
             'Verbose': False,
             'MaxMainIter': 50,
             'RelStopTol': 1e-4,
             'StepSizePolicy': StepSizePolicyBB()
         })
         b = bpdn.BPDN(D, s, lmbda=1.0, opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
     assert np.array(b.getitstat().Rsdl).min() < 2e-4
Пример #8
0
 def test_12(self):
     N = 8
     M = 16
     D = np.random.randn(N, M)
     s = np.random.randn(N, 1)
     try:
         opt = bpdn.BPDN.Options({
             'Verbose': False,
             'MaxMainIter': 100,
             'RelStopTol': 1e-4,
             'Momentum': MomentumGenLinear()
         })
         b = bpdn.BPDN(D, s, lmbda=1.0, opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert 0
     assert np.array(b.getitstat().Rsdl).min() < 2e-4
Пример #9
0
 def test_09(self):
     N = 64
     M = 2 * N
     L = 4
     np.random.seed(12345)
     D = np.random.randn(N, M)
     x0 = np.zeros((M, 1))
     si = np.random.permutation(list(range(0, M - 1)))
     x0[si[0:L]] = np.random.randn(L, 1)
     s0 = D.dot(x0)
     lmbda = 5e-3
     opt = bpdn.BPDN.Options({
         'Verbose': False,
         'MaxMainIter': 1000,
         'RelStopTol': 5e-8,
         'Backtrack': BacktrackRobust(gamma_d=0.95)
     })
     b = bpdn.BPDN(D, s0, lmbda, opt)
     b.solve()
     x1 = b.Y
     assert np.abs(b.itstat[-1].ObjFun - 0.012009) < 1e-5
     assert np.abs(b.itstat[-1].DFid - 1.9636082e-06) < 1e-5
     assert np.abs(b.itstat[-1].RegL1 - 2.401446) < 2e-4
     assert np.linalg.norm(x1 - x0) < 1e-3
Пример #10
0
"""

D0 = util.convdicts()['G:8x8x64']
D0 = np.reshape(D0, (np.prod(D0.shape[0:2]), D0.shape[2]))
"""
Compute sparse representation on current dictionary.
"""

lmbda = 0.1
opt = bpdn.BPDN.Options({
    'Verbose': True,
    'MaxMainIter': 50,
    'L': 100,
    'Backtrack': BacktrackRobust()
})
b = bpdn.BPDN(D0, S, lmbda, opt)
X = b.solve()
"""
Update dictionary for training image set using PGM with Cauchy step size policy :cite:`yuan-2008-stepsize`.
"""

opt = cmod.CnstrMOD.Options({
    'Verbose': True,
    'MaxMainIter': 100,
    'L': 50,
    'StepSizePolicy': StepSizePolicyCauchy()
})
c1 = cmod.CnstrMOD(X, S, None, opt)
D11 = c1.solve()
print("CMOD solve time: %.2fs" % c1.timer.elapsed('solve'))
"""
Пример #11
0
Set regularisation parameter and options for BPDN solver with standard PGM backtracking.
"""

lmbda = 2.98e1
L_sc = 9.e2
opt = bpdn.BPDN.Options({
    'Verbose': True,
    'MaxMainIter': 50,
    'Backtrack': BacktrackStandard(),
    'L': L_sc
})
"""
Initialise and run BPDN object
"""

b1 = bpdn.BPDN(D, s, lmbda, opt)
x1 = b1.solve()

print("BPDN standard PGM backtracking solve time: %.2fs" %
      b1.timer.elapsed('solve'))
"""
Set options for BPDN solver with robust PGM backtracking.
"""

opt = bpdn.BPDN.Options({
    'Verbose': True,
    'MaxMainIter': 50,
    'L': L_sc,
    'Backtrack': BacktrackRobust()
})
"""
Пример #12
0
print("ADMM BPDN solve time: %.2fs" % ba.timer.elapsed('solve'))
"""
Set options for PGM solver.
"""

opt_pgm = pbpdn.BPDN.Options({
    'Verbose': True,
    'MaxMainIter': 50,
    'L': 9e2,
    'Backtrack': BacktrackRobust()
})
"""
Initialise and run PGM solver.
"""

bp = pbpdn.BPDN(D, s, lmbda, opt_pgm)
xp = bp.solve()

print("PGM BPDN solve time: %.2fs" % bp.timer.elapsed('solve'))
"""
Plot comparison of reference and recovered representations.
"""

plot.plot(np.hstack((x0, xa, xp)),
          alpha=0.5,
          title='Sparse representation',
          lgnd=['Reference', 'Reconstructed (ADMM)', 'Reconstructed (PGM)'])
"""
Plot functional value, residual, and L
"""