def start_calibration(custom_crop, server, preprocessed_data=None):

    #read params to be calibrated
    params = []
    with open('calibrator/calibratethese.csv') as paramscsv:
        dialect = csv.Sniffer().sniff(paramscsv.read(), delimiters=';,\t')
        paramscsv.seek(0)
        reader = csv.reader(paramscsv, dialect)
        next(reader, None)  # skip the header
        for row in reader:
            p = {}
            p["name"] = row[0]
            p["array"] = row[1]
            p["low"] = float(row[2])
            p["high"] = float(row[3])
            p["stepsize"] = float(row[4])
            p["optguess"] = float(row[5])
            p["minbound"] = float(row[6])
            p["maxbound"] = float(row[7])
            if len(row) == 9 and row[8] != "":
                p["derive_function"] = make_lambda(row[8])
            params.append(p)

    spot_setup = spotpy_setup_MONICA.spot_setup(params, custom_crop, server,
                                                preprocessed_data)
    rep = 100

    sampler = spotpy.algorithms.sceua(spot_setup,
                                      dbname='SCEUA',
                                      dbformat='ram')
    #sampler.sample(rep, ngs=len(params)+1, kstop=2*len(params)+1, peps=0.0001, pcento=0.00001)
    sampler.sample(rep, ngs=len(params) + 1, kstop=2)

    best_params = sampler.status.params

    with open('optimizedparams.csv', 'wb') as outcsvfile:
        writer = csv.writer(outcsvfile)
        for i in range(len(best_params)):
            outrow = []
            arr_pos = ""
            if params[i]["array"].upper() != "FALSE":
                arr_pos = params[i]["array"]
            outrow.append(params[i]["name"] + arr_pos)
            outrow.append(best_params[i])
            writer.writerow(outrow)
        if len(params) > len(best_params):
            reminder = []
            reminder.append(
                "Don't forget to calculate and set derived params!")
            writer.writerow(reminder)
        text = 'optimized parameters saved!'
        print(text)
Пример #2
0
    next(reader, None)  # skip the header
    for row in reader:
        p = {}
        p["name"] = row[0]
        p["array"] = row[1]
        p["low"] = row[2]
        p["high"] = row[3]
        p["stepsize"] = row[4]
        p["optguess"] = row[5]
        p["minbound"] = row[6]
        p["maxbound"] = row[7]
        if len(row) == 9 and row[8] != "":
            p["derive_function"] = make_lambda(row[8])
        params.append(p)

spot_setup = spotpy_setup_MONICA.spot_setup(params, exp_maps, obslist)
rep = 10
results = []

sampler = spotpy.algorithms.sceua(spot_setup, dbname='SCEUA', dbformat='ram')
sampler.sample(rep, ngs=3, kstop=10)
#sampler.sample(rep, ngs=3, kstop=50, pcento=0.01, peps=0.05)
results.append(sampler.getdata())

best = sampler.status.params

with open('optimizedparams.csv', 'wb') as outcsvfile:
    writer = csv.writer(outcsvfile)
    for i in range(len(best)):
        outrow = []
        arr_pos = ""
Пример #3
0
        "runexps": [1] # 1: Askov, 3: Grignon, 4: Kursk, 5: Rothamsted, 6: Ultuna, 7: Versailles, None: all
    },
    "muencheberg": {
        "map_file": "crop_sim_site_MAP_mue.csv",
        "observations": "observations_mue.csv",
        "params": "calibratethese.csv",
        "runexps": None #[13,25] #None: all
    }
}
run = "muencheberg"

exp_maps = helper.read_exp_map(filename=datasets[run]["map_file"], exps=datasets[run]["runexps"])
observations = helper.read_obs(filename=datasets[run]["observations"], exps=datasets[run]["runexps"])
params = helper.read_params(datasets[run]["params"])

spot_setup = spotpy_setup_MONICA.spot_setup(params, exp_maps, observations, config, distrib="normal")

sampler = spotpy.algorithms.demcz(spot_setup, dbname='DEMCz', dbformat='csv')
sampler.sample(1000)
best = sampler.status.params

with open('optimizedparams.csv', 'wb') as outcsvfile:
    writer = csv.writer(outcsvfile)
    for i in range(len(best)):
        outrow=[]
        outrow.append(params[i]["name"])
        outrow.append(best[i])
        writer.writerow(outrow)
    text='optimized parameters saved!'
    print(text)
Пример #4
0
        ]
        #customize environment:
        for soil_p in soil_params:
            set_param(env["params"]["userSoilOrganicParameters"]["DEFAULT"],
                      soil_p["name"], soil_p["value"])
        for cm in env["cropRotations"][0]["cropRotation"]:
            for ws in cm["worksteps"]:
                if ws["type"] == "OrganicFertilization":
                    for fert_p in fert_params:
                        set_param(ws["parameters"], fert_p["name"],
                                  fert_p["value"])

        #with open("dumped_" + env_file, "wb") as _:
        #    _.write(json.dumps(env, indent=4))

        spot_setup = spotpy_setup_MONICA.spot_setup(params, obslist, config,
                                                    env)
        results = []

        if config["cal-method"] == "SCE-UA":
            sampler = spotpy.algorithms.sceua(spot_setup,
                                              dbname='SCEUA',
                                              dbformat='ram')
            sampler.sample(repetitions=config["rep"],
                           ngs=len(params) + 1,
                           kstop=10,
                           pcento=10,
                           peps=10)
        elif config["cal-method"] == "MLE":
            sampler = spotpy.algorithms.mle(spot_setup,
                                            dbname='MLE_CMF',
                                            dbformat='ram')