def test_n_k(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, 2, True) self.X = np.hstack((np.ones(self.y.shape), self.X)) self.X = SP.csr_matrix(self.X) reg = BaseGM_Lag(self.y, self.X, yend=yd2, q=q2, w=self.w, w_lags=2, sig2n_k=True) betas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(reg.betas, betas, RTOL) vm = np.array([ [ 3.49389596e+02, -5.36394351e+00, -2.81960968e+00, -4.35694515e+00 ], [-5.36394351e+00, 2.99965892e-01, 6.44054000e-02, -3.13108972e-02], [-2.81960968e+00, 6.44054000e-02, 3.61800155e-02, 1.61095854e-02], [-4.35694515e+00, -3.13108972e-02, 1.61095854e-02, 1.09698285e-01] ]) np.testing.assert_allclose(reg.vm, vm, RTOL)
def test_init_hac_(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, 2, True) self.X = np.hstack((np.ones(self.y.shape), self.X)) self.X = SP.csr_matrix(self.X) gwk = libpysal.weights.Kernel.from_shapefile( libpysal.examples.get_path('columbus.shp'), k=15, function='triangular', fixed=False) base_gm_lag = BaseGM_Lag(self.y, self.X, yend=yd2, q=q2, w=self.w, w_lags=2, robust='hac', gwk=gwk) tbetas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(base_gm_lag.betas, tbetas) dbetas = D.se_betas(base_gm_lag) se_betas = np.array([19.08513569, 0.51769543, 0.18244862, 0.35460553]) np.testing.assert_allclose(dbetas, se_betas)
def test_init_white_(self): w_lags = 2 X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T #yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, w_lags, True) self.X = np.hstack((np.ones(self.y.shape),self.X)) base_gm_lag = BaseGM_Lag(self.y, self.X, w=self.w, w_lags=w_lags, robust='white') tbetas = np.array([[ 4.53017056e+01], [ 6.20888617e-01], [ -4.80723451e-01], [ 2.83622122e-02]]) np.testing.assert_allclose(base_gm_lag.betas, tbetas) dbetas = D.se_betas(base_gm_lag) se_betas = np.array([ 20.47077481, 0.50613931, 0.20138425, 0.38028295 ]) np.testing.assert_allclose(dbetas, se_betas)
def test_lag_q(self): w_lags = 2 X = np.array(self.db.by_col("INC")) self.X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("CRIME")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) #yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, yd, q, w_lags, False) self.X = np.hstack((np.ones(self.y.shape),self.X)) reg = BaseGM_Lag(self.y, self.X, w=self.w, yend=yd, q=q, w_lags=w_lags, lag_q=False) tbetas = np.array( [[ 108.83261383], [ -0.48041099], [ -1.18950006], [ -0.56140186]]) np.testing.assert_allclose(tbetas, reg.betas) dbetas = D.se_betas(reg) se_betas = np.array([ 58.33203837, 1.09100446, 0.62315167, 0.68088777]) np.testing.assert_allclose(dbetas, se_betas)
def test_init_discbd(self): w_lags = 2 X = np.array(self.db.by_col("INC")) self.X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("CRIME")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) #yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, yd, q, w_lags, True) self.X = np.hstack((np.ones(self.y.shape),self.X)) reg = BaseGM_Lag(self.y, self.X, w=self.w, yend=yd, q=q, w_lags=w_lags) tbetas = np.array([[ 100.79359082], [ -0.50215501], [ -1.14881711], [ -0.38235022]]) np.testing.assert_allclose(tbetas, reg.betas) dbetas = D.se_betas(reg) se_betas = np.array([ 53.0829123 , 1.02511494, 0.57589064, 0.59891744 ]) np.testing.assert_allclose(dbetas, se_betas)
def test___init__(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, 2, True) self.X = np.hstack((np.ones(self.y.shape), self.X)) self.X = SP.csr_matrix(self.X) reg = BaseGM_Lag(self.y, self.X, yend=yd2, q=q2, w=self.w, w_lags=2) betas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(reg.betas, betas, RTOL) h_0 = np.array([ 1., 19.531, 15.72598, 18.594, 24.7142675, 13.72216667, 27.82929567 ]) np.testing.assert_allclose(reg.h.toarray()[0], h_0) hth = np.array([ 49., 704.371999, 1721.312371, 724.7435916, 1707.35412945, 711.31248483, 1729.63201243 ]) np.testing.assert_allclose(reg.hth[0], hth, RTOL) hthi = np.array([ 7.33701328e+00, 2.27764882e-02, 2.18153588e-02, -5.11035447e-02, 1.22515181e-03, -2.38079378e-01, -1.20149133e-01 ]) np.testing.assert_allclose(reg.hthi[0], hthi, RTOL) self.assertEqual(reg.k, 4) self.assertEqual(reg.kstar, 1) np.testing.assert_allclose(reg.mean_y, 38.436224469387746, RTOL) self.assertEqual(reg.n, 49) pfora1a2 = np.array( [80.5588479, -1.06625281, -0.61703759, -1.10071931]) np.testing.assert_allclose(reg.pfora1a2[0], pfora1a2, RTOL) predy_5 = np.array([[50.87411532], [50.76969931], [41.77223722], [33.44262382], [28.77418036]]) np.testing.assert_allclose(reg.predy[0:5], predy_5, RTOL) q_5 = np.array([18.594, 24.7142675, 13.72216667, 27.82929567]) np.testing.assert_allclose(reg.q[0], q_5) np.testing.assert_allclose(reg.sig2n_k, 234.54258763039289, RTOL) np.testing.assert_allclose(reg.sig2n, 215.39625394627919, RTOL) np.testing.assert_allclose(reg.sig2, 215.39625394627919, RTOL) np.testing.assert_allclose(reg.std_y, 18.466069465206047, RTOL) u_5 = np.array([[29.59288768], [-6.20269831], [-15.42223722], [-0.24262282], [-5.54918036]]) np.testing.assert_allclose(reg.u[0:5], u_5, RTOL) np.testing.assert_allclose(reg.utu, 10554.41644336768, RTOL) varb = np.array([ [ 1.48966377e+00, -2.28698061e-02, -1.20217386e-02, -1.85763498e-02 ], [-2.28698061e-02, 1.27893998e-03, 2.74600023e-04, -1.33497705e-04], [-1.20217386e-02, 2.74600023e-04, 1.54257766e-04, 6.86851184e-05], [-1.85763498e-02, -1.33497705e-04, 6.86851184e-05, 4.67711582e-04] ]) np.testing.assert_allclose(reg.varb, varb, RTOL) vm = np.array([ [ 3.20867996e+02, -4.92607057e+00, -2.58943746e+00, -4.00127615e+00 ], [-4.92607057e+00, 2.75478880e-01, 5.91478163e-02, -2.87549056e-02], [-2.58943746e+00, 5.91478163e-02, 3.32265449e-02, 1.47945172e-02], [-4.00127615e+00, -2.87549056e-02, 1.47945172e-02, 1.00743323e-01] ]) np.testing.assert_allclose(reg.vm, vm, RTOL) x_0 = np.array([1., 19.531, 15.72598]) np.testing.assert_allclose(reg.x.toarray()[0], x_0, RTOL) y_5 = np.array([[80.467003], [44.567001], [26.35], [33.200001], [23.225]]) np.testing.assert_allclose(reg.y[0:5], y_5, RTOL) yend_5 = np.array([[35.4585005], [46.67233467], [45.36475125], [32.81675025], [30.81785714]]) np.testing.assert_allclose(reg.yend[0:5], yend_5, RTOL) z_0 = np.array([1., 19.531, 15.72598, 35.4585005]) np.testing.assert_allclose(reg.z.toarray()[0], z_0, RTOL) zthhthi = np.array([[ 1.00000000e+00, -2.22044605e-16, -2.22044605e-16, 2.22044605e-16, 4.44089210e-16, 0.00000000e+00, -8.88178420e-16 ], [ 0.00000000e+00, 1.00000000e+00, -3.55271368e-15, 3.55271368e-15, -7.10542736e-15, 7.10542736e-14, 0.00000000e+00 ], [ 1.81898940e-12, 2.84217094e-14, 1.00000000e+00, 0.00000000e+00, -2.84217094e-14, 5.68434189e-14, 5.68434189e-14 ], [ -8.31133940e+00, -3.76104678e-01, -2.07028208e-01, 1.32618931e+00, -8.04284562e-01, 1.30527047e+00, 1.39136816e+00 ]]) #np.testing.assert_allclose(reg.zthhthi, zthhthi,RTOL) np.testing.assert_array_almost_equal(reg.zthhthi, zthhthi, 7)