Пример #1
0
 def test_n_k(self):
     X = []
     X.append(self.db.by_col("INC"))
     X.append(self.db.by_col("CRIME"))
     self.X = np.array(X).T
     yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, 2,
                                     True)
     self.X = np.hstack((np.ones(self.y.shape), self.X))
     self.X = SP.csr_matrix(self.X)
     reg = BaseGM_Lag(self.y,
                      self.X,
                      yend=yd2,
                      q=q2,
                      w=self.w,
                      w_lags=2,
                      sig2n_k=True)
     betas = np.array([[4.53017056e+01], [6.20888617e-01],
                       [-4.80723451e-01], [2.83622122e-02]])
     np.testing.assert_allclose(reg.betas, betas, RTOL)
     vm = np.array([
         [
             3.49389596e+02, -5.36394351e+00, -2.81960968e+00,
             -4.35694515e+00
         ],
         [-5.36394351e+00, 2.99965892e-01, 6.44054000e-02, -3.13108972e-02],
         [-2.81960968e+00, 6.44054000e-02, 3.61800155e-02, 1.61095854e-02],
         [-4.35694515e+00, -3.13108972e-02, 1.61095854e-02, 1.09698285e-01]
     ])
     np.testing.assert_allclose(reg.vm, vm, RTOL)
Пример #2
0
 def test_init_hac_(self):
     X = []
     X.append(self.db.by_col("INC"))
     X.append(self.db.by_col("CRIME"))
     self.X = np.array(X).T
     yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, 2,
                                     True)
     self.X = np.hstack((np.ones(self.y.shape), self.X))
     self.X = SP.csr_matrix(self.X)
     gwk = libpysal.weights.Kernel.from_shapefile(
         libpysal.examples.get_path('columbus.shp'),
         k=15,
         function='triangular',
         fixed=False)
     base_gm_lag = BaseGM_Lag(self.y,
                              self.X,
                              yend=yd2,
                              q=q2,
                              w=self.w,
                              w_lags=2,
                              robust='hac',
                              gwk=gwk)
     tbetas = np.array([[4.53017056e+01], [6.20888617e-01],
                        [-4.80723451e-01], [2.83622122e-02]])
     np.testing.assert_allclose(base_gm_lag.betas, tbetas)
     dbetas = D.se_betas(base_gm_lag)
     se_betas = np.array([19.08513569, 0.51769543, 0.18244862, 0.35460553])
     np.testing.assert_allclose(dbetas, se_betas)
Пример #3
0
 def test_init_white_(self):
     w_lags = 2
     X = []
     X.append(self.db.by_col("INC"))
     X.append(self.db.by_col("CRIME"))
     self.X = np.array(X).T
     #yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, w_lags, True)
     self.X = np.hstack((np.ones(self.y.shape),self.X))
     base_gm_lag = BaseGM_Lag(self.y, self.X, w=self.w, w_lags=w_lags, robust='white')
     tbetas = np.array([[  4.53017056e+01], [  6.20888617e-01], [ -4.80723451e-01], [  2.83622122e-02]])
     np.testing.assert_allclose(base_gm_lag.betas, tbetas) 
     dbetas = D.se_betas(base_gm_lag)
     se_betas = np.array([ 20.47077481, 0.50613931, 0.20138425, 0.38028295 ])
     np.testing.assert_allclose(dbetas, se_betas)
Пример #4
0
 def test_lag_q(self):
     w_lags = 2
     X = np.array(self.db.by_col("INC"))
     self.X = np.reshape(X, (49,1))
     yd = np.array(self.db.by_col("CRIME"))
     yd = np.reshape(yd, (49,1))
     q = np.array(self.db.by_col("DISCBD"))
     q = np.reshape(q, (49,1))
     #yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, yd, q, w_lags, False)
     self.X = np.hstack((np.ones(self.y.shape),self.X))
     reg = BaseGM_Lag(self.y, self.X, w=self.w, yend=yd, q=q, w_lags=w_lags, lag_q=False)
     tbetas = np.array( [[ 108.83261383], [  -0.48041099], [  -1.18950006], [  -0.56140186]])
     np.testing.assert_allclose(tbetas, reg.betas)
     dbetas = D.se_betas(reg)
     se_betas = np.array([ 58.33203837,   1.09100446,   0.62315167,   0.68088777])
     np.testing.assert_allclose(dbetas, se_betas)
Пример #5
0
 def test_init_discbd(self):
     w_lags = 2
     X = np.array(self.db.by_col("INC"))
     self.X = np.reshape(X, (49,1))
     yd = np.array(self.db.by_col("CRIME"))
     yd = np.reshape(yd, (49,1))
     q = np.array(self.db.by_col("DISCBD"))
     q = np.reshape(q, (49,1))
     #yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, yd, q, w_lags, True)
     self.X = np.hstack((np.ones(self.y.shape),self.X))
     reg = BaseGM_Lag(self.y, self.X, w=self.w, yend=yd, q=q, w_lags=w_lags)
     tbetas = np.array([[ 100.79359082], [  -0.50215501], [  -1.14881711], [  -0.38235022]])
     np.testing.assert_allclose(tbetas, reg.betas)
     dbetas = D.se_betas(reg)
     se_betas = np.array([ 53.0829123 ,   1.02511494,   0.57589064,   0.59891744 ])
     np.testing.assert_allclose(dbetas, se_betas)
Пример #6
0
 def test___init__(self):
     X = []
     X.append(self.db.by_col("INC"))
     X.append(self.db.by_col("CRIME"))
     self.X = np.array(X).T
     yd2, q2 = spreg.utils.set_endog(self.y, self.X, self.w, None, None, 2,
                                     True)
     self.X = np.hstack((np.ones(self.y.shape), self.X))
     self.X = SP.csr_matrix(self.X)
     reg = BaseGM_Lag(self.y, self.X, yend=yd2, q=q2, w=self.w, w_lags=2)
     betas = np.array([[4.53017056e+01], [6.20888617e-01],
                       [-4.80723451e-01], [2.83622122e-02]])
     np.testing.assert_allclose(reg.betas, betas, RTOL)
     h_0 = np.array([
         1., 19.531, 15.72598, 18.594, 24.7142675, 13.72216667, 27.82929567
     ])
     np.testing.assert_allclose(reg.h.toarray()[0], h_0)
     hth = np.array([
         49., 704.371999, 1721.312371, 724.7435916, 1707.35412945,
         711.31248483, 1729.63201243
     ])
     np.testing.assert_allclose(reg.hth[0], hth, RTOL)
     hthi = np.array([
         7.33701328e+00, 2.27764882e-02, 2.18153588e-02, -5.11035447e-02,
         1.22515181e-03, -2.38079378e-01, -1.20149133e-01
     ])
     np.testing.assert_allclose(reg.hthi[0], hthi, RTOL)
     self.assertEqual(reg.k, 4)
     self.assertEqual(reg.kstar, 1)
     np.testing.assert_allclose(reg.mean_y, 38.436224469387746, RTOL)
     self.assertEqual(reg.n, 49)
     pfora1a2 = np.array(
         [80.5588479, -1.06625281, -0.61703759, -1.10071931])
     np.testing.assert_allclose(reg.pfora1a2[0], pfora1a2, RTOL)
     predy_5 = np.array([[50.87411532], [50.76969931], [41.77223722],
                         [33.44262382], [28.77418036]])
     np.testing.assert_allclose(reg.predy[0:5], predy_5, RTOL)
     q_5 = np.array([18.594, 24.7142675, 13.72216667, 27.82929567])
     np.testing.assert_allclose(reg.q[0], q_5)
     np.testing.assert_allclose(reg.sig2n_k, 234.54258763039289, RTOL)
     np.testing.assert_allclose(reg.sig2n, 215.39625394627919, RTOL)
     np.testing.assert_allclose(reg.sig2, 215.39625394627919, RTOL)
     np.testing.assert_allclose(reg.std_y, 18.466069465206047, RTOL)
     u_5 = np.array([[29.59288768], [-6.20269831], [-15.42223722],
                     [-0.24262282], [-5.54918036]])
     np.testing.assert_allclose(reg.u[0:5], u_5, RTOL)
     np.testing.assert_allclose(reg.utu, 10554.41644336768, RTOL)
     varb = np.array([
         [
             1.48966377e+00, -2.28698061e-02, -1.20217386e-02,
             -1.85763498e-02
         ],
         [-2.28698061e-02, 1.27893998e-03, 2.74600023e-04, -1.33497705e-04],
         [-1.20217386e-02, 2.74600023e-04, 1.54257766e-04, 6.86851184e-05],
         [-1.85763498e-02, -1.33497705e-04, 6.86851184e-05, 4.67711582e-04]
     ])
     np.testing.assert_allclose(reg.varb, varb, RTOL)
     vm = np.array([
         [
             3.20867996e+02, -4.92607057e+00, -2.58943746e+00,
             -4.00127615e+00
         ],
         [-4.92607057e+00, 2.75478880e-01, 5.91478163e-02, -2.87549056e-02],
         [-2.58943746e+00, 5.91478163e-02, 3.32265449e-02, 1.47945172e-02],
         [-4.00127615e+00, -2.87549056e-02, 1.47945172e-02, 1.00743323e-01]
     ])
     np.testing.assert_allclose(reg.vm, vm, RTOL)
     x_0 = np.array([1., 19.531, 15.72598])
     np.testing.assert_allclose(reg.x.toarray()[0], x_0, RTOL)
     y_5 = np.array([[80.467003], [44.567001], [26.35], [33.200001],
                     [23.225]])
     np.testing.assert_allclose(reg.y[0:5], y_5, RTOL)
     yend_5 = np.array([[35.4585005], [46.67233467], [45.36475125],
                        [32.81675025], [30.81785714]])
     np.testing.assert_allclose(reg.yend[0:5], yend_5, RTOL)
     z_0 = np.array([1., 19.531, 15.72598, 35.4585005])
     np.testing.assert_allclose(reg.z.toarray()[0], z_0, RTOL)
     zthhthi = np.array([[
         1.00000000e+00, -2.22044605e-16, -2.22044605e-16, 2.22044605e-16,
         4.44089210e-16, 0.00000000e+00, -8.88178420e-16
     ],
                         [
                             0.00000000e+00, 1.00000000e+00,
                             -3.55271368e-15, 3.55271368e-15,
                             -7.10542736e-15, 7.10542736e-14, 0.00000000e+00
                         ],
                         [
                             1.81898940e-12, 2.84217094e-14, 1.00000000e+00,
                             0.00000000e+00, -2.84217094e-14,
                             5.68434189e-14, 5.68434189e-14
                         ],
                         [
                             -8.31133940e+00, -3.76104678e-01,
                             -2.07028208e-01, 1.32618931e+00,
                             -8.04284562e-01, 1.30527047e+00, 1.39136816e+00
                         ]])
     #np.testing.assert_allclose(reg.zthhthi, zthhthi,RTOL)
     np.testing.assert_array_almost_equal(reg.zthhthi, zthhthi, 7)