def test_get_spikes(self):
        """
        test for get spikes
        :return:
        """
        p.setup(timestep=0.1, min_delay=1.0, max_delay=14.40)
        n_neurons = 200  # number of neurons in each population
        p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)

        cell_params_lif = {
            'cm': 0.25,
            'i_offset': 0.0,
            'tau_m': 20.0,
            'tau_refrac': 2.0,
            'tau_syn_E': 5.0,
            'tau_syn_I': 5.0,
            'v_reset': -70.0,
            'v_rest': -65.0,
            'v_thresh': -50.0
        }

        populations = list()
        projections = list()

        weight_to_spike = 2.0
        delay = 1.7

        loop_connections = list()
        for i in range(0, n_neurons):
            single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
                                 delay)
            loop_connections.append(single_connection)

        injection_connection = [(0, 0, weight_to_spike, 1)]
        spike_array = {'spike_times': [[0]]}
        populations.append(
            p.Population(n_neurons,
                         p.IF_curr_exp,
                         cell_params_lif,
                         label='pop_1'))
        populations.append(
            p.Population(1,
                         p.SpikeSourceArray,
                         spike_array,
                         label='inputSpikes_1'))

        projections.append(
            p.Projection(populations[0], populations[0],
                         p.FromListConnector(loop_connections)))
        projections.append(
            p.Projection(populations[1], populations[0],
                         p.FromListConnector(injection_connection)))

        populations[0].record_v()
        populations[0].record_gsyn()
        populations[0].record()

        p.run(500)

        spikes = populations[0].getSpikes(compatible_output=True)
        pre_recorded_spikes = [[0, 3.5], [1, 6.7], [2, 9.9], [3, 13.1],
                               [4, 16.3], [5, 19.5], [6, 22.7], [7, 25.9],
                               [8, 29.1], [9, 32.3], [10, 35.5], [11, 38.7],
                               [12, 41.9], [13, 45.1], [14, 48.3], [15, 51.5],
                               [16, 54.7], [17, 57.9], [18, 61.1], [19, 64.3],
                               [20, 67.5], [21, 70.7], [22, 73.9], [23, 77.1],
                               [24, 80.3], [25, 83.5], [26, 86.7], [27, 89.9],
                               [28, 93.1], [29, 96.3], [30, 99.5], [31, 102.7],
                               [32, 105.9], [33, 109.1], [34, 112.3],
                               [35, 115.5], [36, 118.7], [37, 121.9],
                               [38, 125.1], [39, 128.3], [40, 131.5],
                               [41, 134.7], [42, 137.9], [43, 141.1],
                               [44, 144.3], [45, 147.5], [46, 150.7],
                               [47, 153.9], [48, 157.1], [49, 160.3],
                               [50, 163.5], [51, 166.7], [52, 169.9],
                               [53, 173.1], [54, 176.3], [55, 179.5],
                               [56, 182.7], [57, 185.9], [58, 189.1],
                               [59, 192.3], [60, 195.5]]

        p.end()

        for spike_element, read_element in zip(spikes, pre_recorded_spikes):
            self.assertEqual(round(spike_element[0], 1),
                             round(read_element[0], 1))
            self.assertEqual(round(spike_element[1], 1),
                             round(read_element[1], 1))
Пример #2
0
            for x_ind in range(input_size):
                for y_ind in range(output_size):
                    weights = w1[x_ind][y_ind]
                    #weights = w1[x_ind]
                    #for i in range(w.shape[1]):
                    if weights > 0:
                        conn_list_exci.append((x_ind, y_ind, weights, 1.))
                    elif weights < 0:
                        conn_list_inhi.append((x_ind, y_ind, weights, 1.))
        #print output_size
            pop_out = p.Population(output_size, p.IF_curr_exp, cell_params_lif)
            if len(conn_list_exci) > 0:
                connections['e2e'] = p.Projection(
                    pop_in,
                    pop_out,
                    p.FromListConnector(conn_list_exci),
                    label='excitatory')
            if len(conn_list_inhi) > 0:
                connections['i2i'] = p.Projection(
                    pop_in,
                    pop_out,
                    p.FromListConnector(conn_list_inhi),
                    label='inhibitory')

        #connection=p.Projection(pop_in, pop_out,AllToAllConnector(weights = pos_w), target='excitatory')
        #connection=p.Projection(pop_in, pop_out,AllToAllConnector(weights = neg_w), target='inhibitory')
            pop_list.append(pop_out)
            pop_in = pop_out
    except EOFError:
        pass
    pop_out.record()
Пример #3
0
def run_test(w_list, cell_para, spike_source_data):
    #Du.set_trace()
    pop_list = []
    p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
    #input poisson layer
    input_size = w_list[0].shape[0]
    #print w_list[0].shape[0]
    #print w_list[1].shape[0]

    list = []
    for j in range(input_size):
        list.append(spike_source_data[j])
    pop_in = p.Population(input_size, p.SpikeSourceArray,
                          {'spike_times': list})

    pop_list.append(pop_in)

    #for j in range(input_size):
    #pop_in[j].spike_times = spike_source_data[j]

    #pop_in = p.Population(input_size, p.SpikeSourceArray, {'spike_times' : []})
    #for j in range(input_size):
    #    pop_in[j].spike_times = spike_source_data[j]
    #pop_list.append(pop_in)

    #count =0
    #print w_list[0].shape[0]
    for w in w_list:
        input_size = w.shape[0]
        #count = count+1
        #print count
        output_size = w.shape[1]
        #pos_w = np.copy(w)
        #pos_w[pos_w < 0] = 0
        #neg_w = np.copy(w)
        #neg_w[neg_w > 0] = 0
        conn_list_exci = []
        conn_list_inhi = []
        #k_size=in_size-out_size+1
        for x_ind in range(input_size):
            for y_ind in range(output_size):
                weights = w[x_ind][y_ind]
                #for i in range(w.shape[1]):
                if weights > 0:
                    conn_list_exci.append((x_ind, y_ind, weights, 1.))
                elif weights < 0:
                    conn_list_inhi.append((x_ind, y_ind, weights, 1.))
        #print output_size
        pop_out = p.Population(output_size, p.IF_curr_exp, cell_para)
        if len(conn_list_exci) > 0:
            p.Projection(pop_in,
                         pop_out,
                         p.FromListConnector(conn_list_exci),
                         target='excitatory')
        if len(conn_list_inhi) > 0:
            p.Projection(pop_in,
                         pop_out,
                         p.FromListConnector(conn_list_inhi),
                         target='inhibitory')
        #p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = pos_w), target='excitatory')
        #p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = neg_w), target='inhibitory')
        pop_list.append(pop_out)
        pop_in = pop_out

    pop_out.record()
    run_time = np.ceil(np.max(spike_source_data)[0] / 1000.) * 1000
    #print run_time
    p.run(run_time)
    spikes = pop_out.getSpikes(compatible_output=True)
    return spikes
Пример #4
0
# Connect key spike injector to breakout population
p.Projection(key_input, breakout_pop, p.OneToOneConnector(weights=2))

# Create visualiser
visualiser = spinn_breakout.Visualiser(UDP_PORT,
                                       key_input_connection,
                                       x_res=X_RESOLUTION,
                                       y_res=Y_RESOLUTION,
                                       x_bits=X_BITS,
                                       y_bits=Y_BITS)

direction_population = p.Population(3, p.IF_curr_exp, cell_params_lif)
p.Projection(
    direction_population, breakout_pop,
    p.FromListConnector([(1, 1, weight_to_spike, delay),
                         (2, 2, weight_to_spike, delay)]))

## Code to implement https://trello.com/c/rLwRIOxq/111-hard-coded-breakout follows
on_ids = get_on_neuron_ids()
off_ids = get_off_neuron_ids()
no_paddle_on_ids = on_ids[:-1, :]
only_paddle_on_ids = on_ids[-1, :]
only_paddle_off_ids = off_ids[-1, :]
paddle_presence_weight = .7
ball_presence_weight = .7

# Create  all needed populations

ball_position = p.Population(GAME_WIDTH // pool_size,
                             p.IF_curr_exp,
                             cell_params_lif,
projections = list()

weight_to_spike = 2.0
delay = 1

connections = list()
for i in range(0, nNeurons):
    singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, delay)
    connections.append(singleConnection)

injectionConnection = [(0, 0, weight_to_spike, 1)]
spikeArray = {'spike_times': [[0]]}
populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif, label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spikeArray, label='inputSpikes_1'))

projections.append(p.Projection(populations[0], populations[0], p.FromListConnector(connections)))
projections.append(p.Projection(populations[1], populations[0], p.FromListConnector(injectionConnection)))

#populations[0].record_v()
#populations[0].record_gsyn()
populations[0].record()

p.run(1000)

v = None
gsyn = None
spikes = None

#v = populations[0].get_v(compatible_output=True)
#gsyn = populations[0].get_gsyn(compatible_output=True)
spikes = populations[0].getSpikes(compatible_output=True)
Пример #6
0
# Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
                    Frontend.OneToOneConnector(weights=weight_to_spike))
Frontend.Projection(injector_backward, pop_backward,
                    Frontend.OneToOneConnector(weights=weight_to_spike))

# Synfire chain connections where each neuron is connected to its next neuron
# NOTE: there is no recurrent connection so that each chain stops once it
# reaches the end
loop_forward = list()
loop_backward = list()
for i in range(0, n_neurons - 1):
    loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
    loop_backward.append(((i + 1) % n_neurons, i, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
                    Frontend.FromListConnector(loop_forward))
Frontend.Projection(pop_backward, pop_backward,
                    Frontend.FromListConnector(loop_backward))

# record spikes from the synfire chains so that we can read off valid results
# in a safe way afterwards, and verify the behavior
pop_forward.record()
pop_backward.record()

# Activate the sending of live spikes
ExternalDevices.activate_live_output_for(pop_forward,
                                         database_notify_host="localhost",
                                         database_notify_port_num=19996)
ExternalDevices.activate_live_output_for(pop_backward,
                                         database_notify_host="localhost",
                                         database_notify_port_num=19996)
    def test_get_gsyn(self):
        """
        test that tests the getting of gsyn from a pre determined recording
        :return:
        """
        p.setup(timestep=1, min_delay=1.0, max_delay=14.40)
        n_neurons = 10  # number of neurons in each population
        runtime = 50
        p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)

        cell_params_lif = {'cm': 0.25,
                           'i_offset': 0.0,
                           'tau_m': 20.0,
                           'tau_refrac': 2.0,
                           'tau_syn_E': 5.0,
                           'tau_syn_I': 5.0,
                           'v_reset': -70.0,
                           'v_rest': -65.0,
                           'v_thresh': -50.0
                           }

        populations = list()
        projections = list()

        weight_to_spike = 2.0
        delay = 1.7

        loop_connections = list()
        for i in range(0, n_neurons):
            single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
                                 delay)
            loop_connections.append(single_connection)

        injection_connection = [(0, 0, weight_to_spike, 1)]
        spike_array = {'spike_times': [[0]]}
        populations.append(p.Population(n_neurons, p.IF_curr_exp,
                                        cell_params_lif,
                           label='pop_1'))
        populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
                           label='inputSpikes_1'))

        projections.append(p.Projection(populations[0], populations[0],
                           p.FromListConnector(loop_connections)))
        projections.append(p.Projection(populations[1], populations[0],
                           p.FromListConnector(injection_connection)))

        populations[0].record_v()
        populations[0].record_gsyn()
        populations[0].record()

        p.run(runtime)

        gsyn = populations[0].get_gsyn(compatible_output=True)
        current_file_path = os.path.dirname(os.path.abspath(__file__))
        current_file_path = os.path.join(current_file_path, "gsyn.data")
        pre_recorded_data = p.utility_calls.read_in_data_from_file(
            current_file_path, 0, n_neurons, 0, runtime)

        p.end()

        for spike_element, read_element in zip(gsyn, pre_recorded_data):
            self.assertEqual(round(spike_element[0], 1),
                             round(read_element[0], 1))
            self.assertEqual(round(spike_element[1], 1),
                             round(read_element[1], 1))
            self.assertEqual(round(spike_element[2], 1),
                             round(read_element[2], 1))
Пример #8
0
    def test_something(self):
        #!/usr/bin/python
        import pylab

        import spynnaker.pyNN as p

        p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
        nNeurons = 200  # number of neurons in each population
        p.set_number_of_neurons_per_core("IF_curr_exp", nNeurons / 2)

        cell_params_lif = {
            'cm': 0.25,  # nF
            'i_offset': 0.0,
            'tau_m': 20.0,
            'tau_refrac': 2.0,
            'tau_syn_E': 5.0,
            'tau_syn_I': 5.0,
            'v_reset': -70.0,
            'v_rest': -65.0,
            'v_thresh': -50.0
        }

        populations = list()
        projections = list()

        weight_to_spike = 2.0
        delay = 17

        loop_connections = list()
        for i in range(0, nNeurons):
            single_connection = (i, ((i + 1) % nNeurons), weight_to_spike,
                                 delay)
            loop_connections.append(single_connection)

        injection_connection = [(0, 0, weight_to_spike, 1)]
        spike_array = {'spike_times': [[0]]}
        populations.append(
            p.Population(nNeurons,
                         p.IF_curr_exp,
                         cell_params_lif,
                         label='pop_1'))
        populations.append(
            p.Population(1,
                         p.SpikeSourceArray,
                         spike_array,
                         label='inputSpikes_1'))

        projections.append(
            p.Projection(populations[0], populations[0],
                         p.FromListConnector(loop_connections)))
        projections.append(
            p.Projection(populations[1], populations[0],
                         p.FromListConnector(injection_connection)))

        populations[0].record_v()
        #populations[0].record_gsyn()
        #populations[0].record(visualiser_mode=p.VISUALISER_MODES.RASTER)

        p.run(5000)

        v = None
        gsyn = None
        spikes = None

        v = populations[0].get_v(compatible_output=True)

        #assert(v == )

        #gsyn = populations[0].get_gsyn(compatible_output=True)
        #spikes = populations[0].getSpikes(compatible_output=True)

        if spikes is not None:
            print spikes
            pylab.figure()
            pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
            pylab.xlabel('Time/ms')
            pylab.ylabel('spikes')
            pylab.title('spikes')
            pylab.show()
        else:
            print "No spikes received"

        # Make some graphs

        if v is not None:
            ticks = len(v) / nNeurons
            pylab.figure()
            pylab.xlabel('Time/ms')
            pylab.ylabel('v')
            pylab.title('v')
            for pos in range(0, nNeurons, 20):
                v_for_neuron = v[pos * ticks:(pos + 1) * ticks]
                pylab.plot([i[1] for i in v_for_neuron],
                           [i[2] for i in v_for_neuron])
            pylab.show()

        if gsyn is not None:
            ticks = len(gsyn) / nNeurons
            pylab.figure()
            pylab.xlabel('Time/ms')
            pylab.ylabel('gsyn')
            pylab.title('gsyn')
            for pos in range(0, nNeurons, 20):
                gsyn_for_neuron = gsyn[pos * ticks:(pos + 1) * ticks]
                pylab.plot([i[1] for i in gsyn_for_neuron],
                           [i[2] for i in gsyn_for_neuron])
            pylab.show()

        p.end(stop_on_board=True)
    def test_print_spikes(self):
        machine_time_step = 0.1

        p.setup(timestep=machine_time_step, min_delay=1.0, max_delay=14.40)
        n_neurons = 20  # number of neurons in each population
        p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)

        cell_params_lif = {
            'cm': 0.25,
            'i_offset': 0.0,
            'tau_m': 20.0,
            'tau_refrac': 2.0,
            'tau_syn_E': 5.0,
            'tau_syn_I': 5.0,
            'v_reset': -70.0,
            'v_rest': -65.0,
            'v_thresh': -50.0
        }

        populations = list()
        projections = list()

        weight_to_spike = 2.0
        delay = 1.7

        loop_connections = list()
        for i in range(0, n_neurons):
            single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
                                 delay)
            loop_connections.append(single_connection)

        injection_connection = [(0, 0, weight_to_spike, 1)]
        spike_array = {'spike_times': [[0]]}
        populations.append(
            p.Population(n_neurons,
                         p.IF_curr_exp,
                         cell_params_lif,
                         label='pop_1'))
        populations.append(
            p.Population(1,
                         p.SpikeSourceArray,
                         spike_array,
                         label='inputSpikes_1'))

        projections.append(
            p.Projection(populations[0], populations[0],
                         p.FromListConnector(loop_connections)))
        projections.append(
            p.Projection(populations[1], populations[0],
                         p.FromListConnector(injection_connection)))

        populations[0].record_v()
        populations[0].record_gsyn()
        populations[0].record()

        p.run(500)

        spikes = populations[0].getSpikes(compatible_output=True)

        current_file_path = os.path.dirname(os.path.abspath(__file__))
        current_file_path = os.path.join(current_file_path, "spikes.data")
        spike_file = populations[0].printSpikes(current_file_path)

        spike_reader = p.utility_calls.read_spikes_from_file(
            current_file_path,
            min_atom=0,
            max_atom=n_neurons,
            min_time=0,
            max_time=500)
        read_in_spikes = spike_reader.spike_times
        p.end()
        os.remove(current_file_path)

        for spike_element, read_element in zip(spikes, read_in_spikes):
            self.assertEqual(round(spike_element[0], 1),
                             round(read_element[0], 1))
            self.assertEqual(round(spike_element[1], 1),
                             round(read_element[1], 1))
Пример #10
0
# cond setup
populations.append(
    p.Population(nNeurons, p.IF_curr_exp, cell_params_lif, label='pop_curr'))
# izk setup
populations.append(
    p.Population(nNeurons, p.IZK_curr_exp, cell_params_izk, label='izk pop'))

# sink pop for spikes to go to (otherwise they are not recorded as firing)
populations.append(
    p.Population(nNeurons, p.IF_curr_exp, cell_params_lif, label='sink_pop'))
populations.append(
    p.Population(1, p.SpikeSourceArray, spikeArray, label='inputSpike'))

projections.append(
    p.Projection(populations[4], populations[0],
                 p.FromListConnector(cond_injection_connection)))
projections.append(
    p.Projection(populations[4], populations[1],
                 p.FromListConnector(curr_injection_connection)))
projections.append(
    p.Projection(populations[4], populations[2],
                 p.FromListConnector(izk_injection_connection)))
projections.append(
    p.Projection(populations[2], populations[3],
                 p.FromListConnector(sinkConnection)))
projections.append(
    p.Projection(populations[1], populations[3],
                 p.FromListConnector(sinkConnection)))
projections.append(
    p.Projection(populations[0], populations[3],
                 p.FromListConnector(sinkConnection)))
Пример #11
0
#TrianSpikeON = BuildTrainingSpike(order,1)
in_spike = BuildTrainingSpike_with_noise(order, 1, 198)
#print TrianSpikeON
spikeArrayOn = {'spike_times': in_spike}
ON_pop = sim.Population(prepop_size,
                        sim.SpikeSourceArray,
                        spikeArrayOn,
                        label='inputSpikes_On')
post_pop = sim.Population(postpop_size,
                          sim.IF_curr_exp,
                          cell_params_lif,
                          label='post_1')

connectionsOn = sim.Projection(
    ON_pop, post_pop,
    sim.FromListConnector(convert_weights_to_list(weights_import, delay)))

#inhibitory between the neurons
connection_I = sim.Projection(post_pop,
                              post_pop,
                              sim.AllToAllConnector(
                                  weights=15,
                                  delays=1,
                                  allow_self_connections=False),
                              target='inhibitory')
ON_pop.record()
post_pop.record()

sim.run(simtime)

# == Get the Simulated Data =================================================
    def __init__(self):

        # initial call to set up the front end (pynn requirement)
        Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)

        # neurons per population and the length of runtime in ms for the
        # simulation, as well as the expected weight each spike will contain
        self.n_neurons = 100
        run_time = 100000
        weight_to_spike = 2.0

        # neural parameters of the IF_curr model used to respond to injected
        # spikes.
        # (cell params for a synfire chain)
        cell_params_lif = {
            'cm': 0.25,
            'i_offset': 0.0,
            'tau_m': 20.0,
            'tau_refrac': 2.0,
            'tau_syn_E': 5.0,
            'tau_syn_I': 5.0,
            'v_reset': -70.0,
            'v_rest': -65.0,
            'v_thresh': -50.0
        }

        ##################################
        # Parameters for the injector population.  This is the minimal set of
        # parameters required, which is for a set of spikes where the key is
        # not important.  Note that a virtual key *will* be assigned to the
        # population, and that spikes sent which do not match this virtual key
        # will be dropped; however, if spikes are sent using 16-bit keys, they
        # will automatically be made to match the virtual key.  The virtual
        # key assigned can be obtained from the database.
        ##################################
        cell_params_spike_injector = {

            # The port on which the spiNNaker machine should listen for
            # packets. Packets to be injected should be sent to this port on
            # the spiNNaker machine
            'port': 12345
        }

        ##################################
        # Parameters for the injector population.  Note that each injector
        # needs to be given a different port.  The virtual key is assigned
        # here, rather than being allocated later.  As with the above, spikes
        # injected need to match this key, and this will be done automatically
        # with 16-bit keys.
        ##################################
        cell_params_spike_injector_with_key = {

            # The port on which the spiNNaker machine should listen for
            # packets. Packets to be injected should be sent to this port on
            # the spiNNaker machine
            'port': 12346,

            # This is the base key to be used for the injection, which is used
            # to allow the keys to be routed around the spiNNaker machine.
            # This assignment means that 32-bit keys must have the high-order
            # 16-bit set to 0x7; This will automatically be prepended to
            # 16-bit keys.
            'virtual_key': 0x70000
        }

        # create synfire populations (if cur exp)
        pop_forward = Frontend.Population(self.n_neurons,
                                          Frontend.IF_curr_exp,
                                          cell_params_lif,
                                          label='pop_forward')
        pop_backward = Frontend.Population(self.n_neurons,
                                           Frontend.IF_curr_exp,
                                           cell_params_lif,
                                           label='pop_backward')

        # Create injection populations
        injector_forward = Frontend.Population(
            self.n_neurons,
            ExternalDevices.SpikeInjector,
            cell_params_spike_injector_with_key,
            label='spike_injector_forward')
        injector_backward = Frontend.Population(
            self.n_neurons,
            ExternalDevices.SpikeInjector,
            cell_params_spike_injector,
            label='spike_injector_backward')

        # Create a connection from the injector into the populations
        Frontend.Projection(
            injector_forward, pop_forward,
            Frontend.OneToOneConnector(weights=weight_to_spike))
        Frontend.Projection(
            injector_backward, pop_backward,
            Frontend.OneToOneConnector(weights=weight_to_spike))

        # Synfire chain connections where each neuron is connected to its next
        # neuron
        # NOTE: there is no recurrent connection so that each chain stops once
        # it reaches the end
        loop_forward = list()
        loop_backward = list()
        for i in range(0, self.n_neurons - 1):
            loop_forward.append(
                (i, (i + 1) % self.n_neurons, weight_to_spike, 3))
            loop_backward.append(
                ((i + 1) % self.n_neurons, i, weight_to_spike, 3))
        Frontend.Projection(pop_forward, pop_forward,
                            Frontend.FromListConnector(loop_forward))
        Frontend.Projection(pop_backward, pop_backward,
                            Frontend.FromListConnector(loop_backward))

        # record spikes from the synfire chains so that we can read off valid
        # results in a safe way afterwards, and verify the behavior
        pop_forward.record()
        pop_backward.record()

        # Activate the sending of live spikes
        ExternalDevices.activate_live_output_for(
            pop_forward,
            database_notify_host="localhost",
            database_notify_port_num=19996)
        ExternalDevices.activate_live_output_for(
            pop_backward,
            database_notify_host="localhost",
            database_notify_port_num=19996)

        # set up gui
        from multiprocessing import Process
        p = Process(target=GUI, args=[self.n_neurons])
        p.start()
        # Run the simulation on spiNNaker
        Frontend.run(run_time)

        # Retrieve spikes from the synfire chain population
        spikes_forward = pop_forward.getSpikes()
        spikes_backward = pop_backward.getSpikes()

        # If there are spikes, plot using matplotlib
        if len(spikes_forward) != 0 or len(spikes_backward) != 0:
            pylab.figure()
            if len(spikes_forward) != 0:
                pylab.plot([i[1] for i in spikes_forward],
                           [i[0] for i in spikes_forward], "b.")
            if len(spikes_backward) != 0:
                pylab.plot([i[1] for i in spikes_backward],
                           [i[0] for i in spikes_backward], "r.")
            pylab.ylabel('neuron id')
            pylab.xlabel('Time/ms')
            pylab.title('spikes')
            pylab.show()
        else:
            print "No spikes received"

        # Clear data structures on spiNNaker to leave the machine in a clean
        # state for future executions
        Frontend.end()
        p.join()
    def _connect_spike_sources(self, retinae=None, verbose=False):

        if verbose:
            print "INFO: Connecting Spike Sources to Network."

        global _retina_proj_l, _retina_proj_r

        # left is 0--dimensionRetinaY-1; right is dimensionRetinaY--dimensionRetinaY*2-1
        connListRetLBlockerL = []
        connListRetLBlockerR = []
        connListRetRBlockerL = []
        connListRetRBlockerR = []
        for y in range(0, self.dim_y):
            connListRetLBlockerL.append(
                (y, y, self.cell_params['synaptic']['wSaB'],
                 self.cell_params['synaptic']['dSaB']))
            connListRetLBlockerR.append(
                (y, y + self.dim_y, self.cell_params['synaptic']['wSzB'],
                 self.cell_params['synaptic']['dSzB']))
            connListRetRBlockerL.append(
                (y, y, self.cell_params['synaptic']['wSzB'],
                 self.cell_params['synaptic']['dSzB']))
            connListRetRBlockerR.append(
                (y, y + self.dim_y, self.cell_params['synaptic']['wSaB'],
                 self.cell_params['synaptic']['dSaB']))

        retinaLeft = retinae['left'].pixel_columns
        retinaRight = retinae['right'].pixel_columns
        pixel = 0
        for row in _retina_proj_l:
            for pop in row:
                ps.Projection(retinaLeft[pixel],
                              self.network[pop][1],
                              ps.OneToOneConnector(
                                  weights=self.cell_params['synaptic']['wSC'],
                                  delays=self.cell_params['synaptic']['dSC']),
                              target='excitatory')
                ps.Projection(retinaLeft[pixel],
                              self.network[pop][0],
                              ps.FromListConnector(connListRetLBlockerL),
                              target='excitatory')
                ps.Projection(retinaLeft[pixel],
                              self.network[pop][0],
                              ps.FromListConnector(connListRetLBlockerR),
                              target='inhibitory')
            pixel += 1

        pixel = 0
        for col in _retina_proj_r:
            for pop in col:
                ps.Projection(retinaRight[pixel],
                              self.network[pop][1],
                              ps.OneToOneConnector(
                                  weights=self.cell_params['synaptic']['wSC'],
                                  delays=self.cell_params['synaptic']['dSC']),
                              target='excitatory')
                ps.Projection(retinaRight[pixel],
                              self.network[pop][0],
                              ps.FromListConnector(connListRetRBlockerR),
                              target='excitatory')
                ps.Projection(retinaRight[pixel],
                              self.network[pop][0],
                              ps.FromListConnector(connListRetRBlockerL),
                              target='inhibitory')
            pixel += 1

        # configure for the live input streaming if desired
        if not (retinae['left'].use_prerecorded_input
                and retinae['right'].use_prerecorded_input):
            from spynnaker_external_devices_plugin.pyNN.connections.spynnaker_live_spikes_connection import \
                SpynnakerLiveSpikesConnection

            all_retina_labels = retinaLeft.labels + retinaRight.labels
            self.live_connection_sender = SpynnakerLiveSpikesConnection(
                receive_labels=None,
                local_port=19999,
                send_labels=all_retina_labels)

            # this callback will be executed right after simulation.run() has been called. If simply a while True
            # is put there, the main thread will stuck there and will not complete the simulation.
            # One solution might be to start a thread/process which runs a "while is_running:" loop unless the main thread
            # sets the "is_running" to False.
            self.live_connection_sender.add_start_callback(
                all_retina_labels[0], self.start_injecting)

            import DVSReader as dvs
            # the port numbers might well be wrong
            self.dvs_stream_left = dvs.DVSReader(
                port=0,
                label=retinaLeft.label,
                live_connection=self.live_connection_sender)
            self.dvs_stream_right = dvs.DVSReader(
                port=1,
                label=retinaRight.label,
                live_connection=self.live_connection_sender)

            # start the threads, i.e. start reading from the DVS. However, nothing will be sent to the SNN.
            # See start_injecting
            self.dvs_stream_left.start()
            self.dvs_stream_right.start()
    def _interconnect_neurons_inhexc(self, network, verbose=False):

        assert network is not None, \
            "ERROR: Network is not initialised! Interconnecting for inhibitory and excitatory patterns failed."

        if verbose and self.cell_params['topological']['radius_i'] < self.dim_x:
            print "WARNING: Bad radius of inhibition. Uniquness constraint cannot be satisfied."
        if verbose and 0 <= self.cell_params['topological'][
                'radius_e'] > self.dim_x:
            print "WARNING: Bad radius of excitation. "

        # create lists with inhibitory along the Retina Right projective line
        nbhoodInhL = []
        nbhoodInhR = []
        nbhoodExcX = []
        nbhoodEcxY = []
        # used for the triangular form of the matrix in order to remain within the square
        if verbose:
            print "INFO: Generating inhibitory and excitatory connectivity patterns."
        # generate rows
        limiter = self.max_disparity - self.min_disparity + 1
        ensembleIndex = 0

        while ensembleIndex < len(network):
            if ensembleIndex / (self.max_disparity - self.min_disparity + 1) > \
                                    (self.dim_x - self.min_disparity) - (self.max_disparity - self.min_disparity) - 1:
                limiter -= 1
                if limiter == 0:
                    break
            nbhoodInhL.append(
                [ensembleIndex + disp for disp in range(0, limiter)])
            ensembleIndex += limiter

        ensembleIndex = len(network)

        # generate columns
        nbhoodInhR = [[x] for x in nbhoodInhL[0]]
        shiftGlob = 0
        for x in nbhoodInhL[1:]:
            shiftGlob += 1
            shift = 0

            for e in x:
                if (shift + 1) % (self.max_disparity - self.min_disparity +
                                  1) == 0:
                    nbhoodInhR.append([e])
                else:
                    nbhoodInhR[shift + shiftGlob].append(e)
                shift += 1

        # generate all diagonals
        for diag in map(None, *nbhoodInhL):
            sublist = []
            for elem in diag:
                if elem is not None:
                    sublist.append(elem)
            nbhoodExcX.append(sublist)

        # generate all y-axis excitation
        for x in range(0, self.dim_y):
            for e in range(1, self.cell_params['topological']['radius_e'] + 1):
                if x + e < self.dim_y:
                    nbhoodEcxY.append(
                        (x, x + e, self.cell_params['synaptic']['wCCe'],
                         self.cell_params['synaptic']['dCCe']))
                if x - e >= 0:
                    nbhoodEcxY.append(
                        (x, x - e, self.cell_params['synaptic']['wCCe'],
                         self.cell_params['synaptic']['dCCe']))

        # Store these lists as global parameters as they can be used to quickly match the spiking collector neuron
        # with the corresponding pixel xy coordinates (same_disparity_indices)
        # TODO: think of a better way to encode pixels: closed form formula would be perfect
        # These are also used when connecting the spike sources to the network! (retina_proj_l, retina_proj_r)

        global _retina_proj_l, _retina_proj_r, same_disparity_indices

        _retina_proj_l = nbhoodInhL
        _retina_proj_r = nbhoodInhR
        same_disparity_indices = nbhoodExcX

        if verbose:
            print "INFO: Connecting neurons for internal excitation and inhibition."

        for row in nbhoodInhL:
            for pop in row:
                for nb in row:
                    if nb != pop:
                        ps.Projection(
                            network[pop][1],
                            network[nb][1],
                            ps.OneToOneConnector(
                                weights=self.cell_params['synaptic']['wCCi'],
                                delays=self.cell_params['synaptic']['dCCi']),
                            target='inhibitory')
        for col in nbhoodInhR:
            for pop in col:
                for nb in col:
                    if nb != pop:
                        ps.Projection(
                            network[pop][1],
                            network[nb][1],
                            ps.OneToOneConnector(
                                weights=self.cell_params['synaptic']['wCCi'],
                                delays=self.cell_params['synaptic']['dCCi']),
                            target='inhibitory')

        for diag in nbhoodExcX:
            for pop in diag:
                for nb in range(
                        1, self.cell_params['topological']['radius_e'] + 1):
                    if diag.index(pop) + nb < len(diag):
                        ps.Projection(
                            network[pop][1],
                            network[diag[diag.index(pop) + nb]][1],
                            ps.OneToOneConnector(
                                weights=self.cell_params['synaptic']['wCCe'],
                                delays=self.cell_params['synaptic']['dCCe']),
                            target='excitatory')
                    if diag.index(pop) - nb >= 0:
                        ps.Projection(
                            network[pop][1],
                            network[diag[diag.index(pop) - nb]][1],
                            ps.OneToOneConnector(
                                weights=self.cell_params['synaptic']['wCCe'],
                                delays=self.cell_params['synaptic']['dCCe']),
                            target='excitatory')

        for ensemble in network:
            ps.Projection(ensemble[1],
                          ensemble[1],
                          ps.FromListConnector(nbhoodEcxY),
                          target='excitatory')
Пример #15
0
 def start_sim(self,sim_time):
     #simulation setup
     self.simtime = sim_time
     sim.setup(timestep=self.setup_cond["timestep"], min_delay=self.setup_cond["min_delay"], max_delay=self.setup_cond["max_delay"])
     #initialise the neuron population
     spikeArrayOn = {'spike_times': self.in_spike}
     pre_pop = sim.Population(self.pre_pop_size, sim.SpikeSourceArray,
                     spikeArrayOn, label='inputSpikes_On')
     post_pop= sim.Population(self.post_pop_size,sim.IF_curr_exp,
                      self.cell_params_lif, label='post_1')
     stdp_model = sim.STDPMechanism(timing_dependence=sim.SpikePairRule(tau_plus= self.stdp_param["tau_plus"],
                                                 tau_minus= self.stdp_param["tau_minus"],
                                                 nearest=True),
                                     weight_dependence=sim.MultiplicativeWeightDependence(w_min= self.stdp_param["w_min"],
                                                            w_max= self.stdp_param["w_max"],
                                                            A_plus= self.stdp_param["A_plus"],
                                                            A_minus= self.stdp_param["A_minus"]))
     #initialise connectiviity of neurons
     #exitatory connection between pre-synaptic and post-synaptic neuron population                                                              
     if(self.inhibitory_spike_mode):
         connectionsOn  = sim.Projection(pre_pop, post_pop, sim.AllToAllConnector(weights = self.I_syn_weight,delays=1,
                                         allow_self_connections=False),
                                         target='inhibitory')
     else: 
         if(self.STDP_mode):
             if(self.allsameweight):
                 connectionsOn = sim.Projection(pre_pop, post_pop, 
                                            sim.AllToAllConnector(weights = self.E_syn_weight,delays=1),
                                             synapse_dynamics=sim.SynapseDynamics(slow=stdp_model),target='excitatory')
             else:
                 connectionsOn = sim.Projection(pre_pop, post_pop, 
                                            sim.FromListConnector(self.conn_list),
                                             synapse_dynamics=sim.SynapseDynamics(slow=stdp_model),target='excitatory')
         else:
             if(self.allsameweight):
                 connectionsOn  = sim.Projection(pre_pop, post_pop, sim.AllToAllConnector(weights = self.E_syn_weight,delays=1),
                                                                      target='excitatory')
             else:
                 connectionsOn  = sim.Projection(pre_pop, post_pop, sim.FromListConnector(self.conn_list),
                                                                      target='excitatory')
             #sim.Projection.setWeights(self.E_syn_weight)
     
     #inhibitory between the neurons post-synaptic neuron population
     connection_I  = sim.Projection(post_pop, post_pop, sim.AllToAllConnector(weights = self.I_syn_weight,delays=1,
                                                          allow_self_connections=False),
                                                          target='inhibitory')
     pre_pop.record()                                                     
     post_pop.record()
     post_pop.record_v()
     sim.run(self.simtime)
     self.pre_spikes = pre_pop.getSpikes(compatible_output=True)
     self.post_spikes = post_pop.getSpikes(compatible_output=True)
     self.post_spikes_v = post_pop.get_v(compatible_output=True)
     self.trained_weights = connectionsOn.getWeights(format='array')
     sim.end()
     #print self.conn_list
     #print self.trained_weights
     '''scipy.io.savemat('trained_weight.mat',{'initial_weight':self.init_weights,
                                            'trained_weight':self.trained_weights
                                    })'''
     scipy.io.savemat('trained_weight0.mat',{'trained_weight':self.trained_weights
                                    })
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
                                  cell_params_lif, label='pop_forward')
pop_backward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
                                   cell_params_lif, label='pop_backward')
# create equiv of parrot popultions for closed loop calculation
pop_forward_parrot = Frontend.Population(
    n_neurons, Frontend.IF_curr_exp, cell_params_lif, label='pop_forward_parrot')
pop_backward_parrot = Frontend.Population(
    n_neurons, Frontend.IF_curr_exp, cell_params_lif, label='pop_backward_parrot')
# Create injection populations
injector_forward = Frontend.Population(
    2, ExternalDevices.SpikeInjector,
    {"port": 19344}, label='spike_injector_forward')
# Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
                    Frontend.FromListConnector([(0, 0, weight_to_spike, 3)]))
Frontend.Projection(injector_forward, pop_backward,
                    Frontend.FromListConnector([(1, 99, weight_to_spike, 3)]))
# Synfire chain connections where each neuron is connected to its next neuron
# NOTE: there is no recurrent connection so that each chain stops once it
# reaches the end
loop_forward = list()
loop_backward = list()
for i in range(0, n_neurons - 1):
    loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
    loop_backward.append(((i + 1) % n_neurons, i, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
                    Frontend.FromListConnector(loop_forward))
Frontend.Projection(pop_backward, pop_backward,
                    Frontend.FromListConnector(loop_backward))
# Add links to the parrot populations for closed loop calculations
Пример #17
0
    singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, delay)
    connections.append(singleConnection)

injectionConnection = [(0, 0, weight_to_spike, delay)]

spikeArray = {'spike_times': [[0]]}
populations.append(
    p.Population(nNeurons, p.IF_curr_exp, cell_params_lif, label='pop_1'))
#populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif, label='pop_2'))
populations.append(
    p.Population(1, p.SpikeSourceArray, spikeArray, label='inputSpikes_1'))
#populations[0].set_mapping_constraint({"x": 1, "y": 0})

projections.append(
    p.Projection(populations[0], populations[0],
                 p.FromListConnector(connections)))
projections.append(
    p.Projection(populations[1], populations[0],
                 p.FromListConnector(injectionConnection)))

populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()

p.run(1000)

v = None
gsyn = None
spikes = None
''''
weights = projections[0].getWeights()
Пример #18
0
    'v_rest': -65.0,
    'v_thresh': -50.0
}
# create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons,
                                  Frontend.IF_curr_exp,
                                  cell_params_lif,
                                  label='pop_forward')
# Create injection populations
injector_forward = Frontend.Population(1,
                                       Frontend.SpikeSourceArray,
                                       {'spike_times': [[0]]},
                                       label='spike_playback_forward')
# Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
                    Frontend.FromListConnector([(0, 0, weight_to_spike, 1)]))
# Synfire chain connections where each neuron is connected to its next neuron
# NOTE: there is no recurrent connection so that each chain stops once it
# reaches the end
loop_forward = list()
for i in range(0, n_neurons - 1):
    loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
                    Frontend.FromListConnector(loop_forward))
# record spikes from the synfire chains so that we can read off valid results
# in a safe way afterwards, and verify the behavior
pop_forward.record()
# Activate the sending of live spikes
ExternalDevices.activate_live_output_for(pop_forward,
                                         database_notify_host="localhost",
                                         database_notify_port_num=19996)
Пример #19
0
# First it's necessary to find which POS neurons are EXCITATORY and which ones are INHIBITORY:
temp_exc_pos = (numpy.array([indices_pos_exc == i
                             for i in exc_neuron_idx])).sum(axis=0)
exc2exc = numpy.arange(
    len(indices_pos_exc))[temp_exc_pos == 1]  # excitatory ones
exc2inh = numpy.arange(
    len(indices_pos_exc))[temp_exc_pos == 0]  # inhibitory ones

# EXC2EXC
indices_pre_exc_e2e = [(numpy.abs(exc_neuron_idx - i)).argmin()
                       for i in indices_pre_exc[exc2exc]]
indices_pos_exc_e2e = [(numpy.abs(exc_neuron_idx - i)).argmin()
                       for i in indices_pos_exc[exc2exc]]

connections_exc2exc = sim.FromListConnector(conn_list=zip(
    indices_pre_exc_e2e, indices_pos_exc_e2e, weights_pre_exc[exc2exc], [0.0] *
    len(exc2exc)))
sim.Projection(pop_lsm_exc,
               pop_lsm_exc,
               connections_exc2exc,
               label="EXC2EXC_conn",
               target='excitatory')

# EXC2INH
indices_pre_exc_e2i = [(numpy.abs(inh_neuron_idx - i)).argmin()
                       for i in indices_pre_exc[exc2inh]]
indices_pos_exc_e2i = [(numpy.abs(inh_neuron_idx - i)).argmin()
                       for i in indices_pos_exc[exc2inh]]

connections_exc2inh = sim.FromListConnector(conn_list=zip(
    indices_pre_exc_e2i, indices_pos_exc_e2i, weights_pre_exc[exc2inh], [0.0] *
Пример #20
0
    for ii in range(0,len(argw)):
        pylab.plot(argw[ii][3]+200*ii,argw[ii][0]+argw[ii][1]*16,".")
    pylab.title('raster plot of Virtual Retina Neuron Population')
    pylab.show()

raster_plot()
#Let us only use the ON events
TrianSpikeON = BuildTrainingSpike(order,1)
#print TrianSpikeON
spikeArrayOn = {'spike_times': TrianSpikeON}
ON_pop = sim.Population(prepop_size, sim.SpikeSourceArray, spikeArrayOn,
                        label='inputSpikes_On')
post_pop= sim.Population(postpop_size,sim.IF_curr_exp, cell_params_lif,
                         label='post_1')

connectionsOn = sim.Projection(ON_pop, post_pop, sim.FromListConnector(
    convert_weights_to_list(weights_import, delay)))
    
#inhibitory between the neurons
connection_I  = sim.Projection(post_pop, post_pop, sim.AllToAllConnector(
    weights = 15,delays=1,allow_self_connections=False), target='inhibitory')
post_pop.record()

sim.run(simtime)

# == Get the Simulated Data =================================================
post_spikes = post_pop.getSpikes(compatible_output=True)
sim.end()

def GetFiringPattern(spike,low,high):
    spikeT = np.transpose(spike)
    time_stamp = spikeT[1]
Пример #21
0
spikeArray = {'spike_times': [[0]]}

for i in range(0, n_pops):
    populations.append(
        p.Population(nNeurons,
                     p.IF_curr_exp,
                     cell_params_lif,
                     label='pop_{}'.format(i)))

populations.append(
    p.Population(1, p.SpikeSourceArray, spikeArray, label='inputSpikes_1'))

for i in range(0, n_pops):
    projections.append(
        p.Projection(populations[i], populations[i],
                     p.FromListConnector(connections)))
    projections.append(
        p.Projection(populations[i], populations[((i + 1) % n_pops)],
                     p.FromListConnector(pop_jump_connection)))

projections.append(
    p.Projection(populations[n_pops], populations[0],
                 p.FromListConnector(injectionConnection)))

#populations[0].record_v()
#populations[0].record_gsyn()

for pop_index in range(0, n_pops):
    populations[pop_index].record()

p.run(25000)
    stdp_model = sim.STDPMechanism(
        timing_dependence=sim.SpikePairRule(tau_plus=50.0, tau_minus=50.0),
        weight_dependence=sim.AdditiveWeightDependence(
            w_min=0.0,
            w_max=instant_spike_weight,
            A_plus=0.000001,
            A_minus=1.0),
        dendritic_delay_fraction=1.0)
    synapse_dynamics = sim.SynapseDynamics(slow=stdp_model)
else:
    synapse_dynamics = None

# Create connector
proj = sim.Projection(neurons,
                      neurons,
                      sim.FromListConnector(conn_list),
                      synapse_dynamics=synapse_dynamics,
                      target="excitatory")

# Stimulate stim neuron
stim = sim.Population(1,
                      sim.SpikeSourceArray, {"spike_times": [2.0]},
                      label="stim")
sim.Projection(
    stim, neurons,
    sim.FromListConnector([
        (0, get_neuron_index(stim_x, stim_y,
                             cost_image.shape[0]), instant_spike_weight, 1.0)
    ]))

# Run network