def _calc_ECI(self): ''' calc position in ECI reference from time:LMST and pos:LLA''' self._df_clear("time") # clear dirty flags self._df_clear("pos") a = wgs72_complete["radiusearthkm"] e2 = wgs72_complete["e^2"] phi = self._geo_lat lambd = self.sidereal_get_LMST() h = self._geo_alti / 1000 # m to km sin_phi = math_helper.sin_deg(phi) cos_phi = math_helper.cos_deg(phi) sin_lambd = math_helper.sin_deg(lambd) cos_lambd = math_helper.cos_deg(lambd) # [Günter Seeber, "Satellite Geodesy", 2nd edition] page 24 # N is the radius of curvature in the prime vertical: # N = a / sqrt( 1 - (e^2)*(sin(lat)^2) ) # EQUATION (2.36) N = a / math.sqrt(1 - e2 * (sin_phi**2)) # EQUATION (2.35) self._eci_x = (N + h) * cos_phi * cos_lambd self._eci_y = (N + h) * cos_phi * sin_lambd self._eci_z = ((1 - e2) * N + h) * sin_phi
def _calc_topoc_equator_spherical(self): ''' computes [Position Angles] and [Angular Velocities] ([Right Ascencion] and [Declination]) in [TOPOcentric Equatorial Coordinate System] of the Sat relavtive to the telescope. (Center = [surface position], References: [Earth axis] / [Equatorial plane] and the direction to the [Vernal equinox].) ''' # Berechnung is aehnlich zu GEOzentrisch spherical, # JEDOCH ist (x,y,z) der vektor vom telescop zum satelliten # und fuer (x',y',z') muss x',y' vom teleskop berechnet werden # ------------- # get cartesian corrdinates xp, yp, zp = self._topocentr_equator["cartesian"]["vel"] x, y, z = self._topocentr_equator["cartesian"]["pos"] r = math_helper.vector_abs((x, y, z)) # ------------- # calc spherical coordinates # ------------- # ANGULAR POSITION Ra = math_helper.atan2_deg(y, x) De = math_helper.asin_deg(z / r) self._topocentr_equator["spherical"]["pos"]["Ra"] = Ra self._topocentr_equator["spherical"]["pos"]["De"] = De self._topocentr_equator["spherical"]["pos"]["R"] = r # ------------- # ANGULAR VELOCITY # x,y,z = f(t) # r = f(t) = sqrt(x^2+y^2+z^2) # Ra = atan(y/x) # d( atan(y(t)/x(t)) )/dt = (x*y' - y*x')/(x^2+y^2) in rad/s Ra_dot = math.degrees((x * yp - y * xp) / (x**2 + y**2)) # De = asin(z/r) # d( asin(z(t)/r(t)) )/dt = # z' - z/(r^2) * (x*x'+y*y'+z*z') # = ------------------------------ in rad/s # sqrt(r^2 - z^2) De_dot = math.degrees((zp - z / (r**2) * (x * xp + y * yp + z * zp)) / math.sqrt(r**2 - z**2)) self._topocentr_equator["spherical"]["vel"]["Ra"] = Ra_dot self._topocentr_equator["spherical"]["vel"]["De"] = De_dot
def __calc_equatorialCoordinates(self): ''' calculates position in equatorial coords from ecliptic ''' import math Jcty = self._TSMgr.time_get_julianCenturiesJ2000() Lam_deg = self._moonCoordinates["ecl_Lon"] # Lambda Bet_deg = self._moonCoordinates["ecl_Lat"] # Beta Eps_deg = MH.eps_deg(Jcty) # Epsilon sinLam = MH.sin_deg(Lam_deg) cosLam = MH.cos_deg(Lam_deg) sinBet = MH.sin_deg(Bet_deg) cosBet = MH.cos_deg(Bet_deg) sinEps = MH.sin_deg(Eps_deg) cosEps = MH.cos_deg(Eps_deg) # [o. Montenbruck] "Grundlagen der Ephemeridenrechnung" S.14 # cos(del)*cos(alp) = cos(bet)*cos(lam) # cos(del)*sin(alp) = cos(eps)*cos(bet)*sin(lam) - sin(eps)*sin(bet) # sin(del) = sin(eps)*cos(bet)*sin(lam) + cos(eps)*sin(bet) Del_rad = math.asin( sinEps*cosBet*sinLam + cosEps*sinBet ) Del_deg = math.degrees(Del_rad) cosDel = math.cos(Del_rad) cosAlp = (cosBet*cosLam) / cosDel sinAlp = (cosEps*cosBet*sinLam - sinEps*sinBet) / cosDel Alp_deg = MH.atan2_deg(sinAlp,cosAlp)%360 self._moonCoordinates["equa_Lon"] = Alp_deg # Alpha / RA self._moonCoordinates["equa_Lat"] = Del_deg # Delta / DE
def _propagate(self): ''' Calculates [Position] and [Velocity] in [Cartesian Coordinate System] for the [GEOcentric AND TOPOcentric Equatorial System] for the statet utc time. (Center = [Earth Center], [Surface position], References: [Earth axis] / [Equatorial plane] and the direction to the [Vernal equinox].) ''' # get utc time of TSMgr object t = self._TSMgr.time_get_utcDateTime() # ------------- # calc pos and vel for GEOcentr cartesian coordins of SAT pos_sat, vel_sat = self._sat.propagate(t.year, t.month, t.day, t.hour, t.minute, t.second + t.microsecond * 1e-6) self._geocentr_equator["cartesian"]["pos"] = pos_sat self._geocentr_equator["cartesian"]["vel"] = vel_sat # ------------- # calc pos and vel for GEOcentr cartesian coordins of TELE #get geocentr pos of tele pos_tele = self._TSMgr.pos_get_ECI() #calc geocentr vel of tele # Formel fuer kartesiches koordinatensystem: # drehender pfeil in xy ebene mit w = winkelgeschw. w = wgs72_complete["omega_RadPerSec"] # winkelgeschw in xy ebene vel_tele = [0, 0, 0] vel_tele[0] = w * pos_tele[1] # x' = w*y vel_tele[1] = -w * pos_tele[0] # y' = - w*x vel_tele[2] = 0 # z' = 0 # (erdrotation in z) = 0 # ------------- # calc pos and vel for TOPOcentr cartesian coordins of SAT(fromTELE) #topocentr pos of sat = [geocentr pos of sat] - [geocentr pos of tele] pos_topo = math_helper.vector_sub(pos_sat, pos_tele) vel_topo = math_helper.vector_sub(vel_sat, vel_tele) self._topocentr_equator["cartesian"]["pos"] = tuple(pos_topo) self._topocentr_equator["cartesian"]["vel"] = tuple(vel_topo)
def __init__(self, TSMgrObj: TSMgr.TimeSpaceMgr, planet: str): ''' Create a planet by its name, with reference to a TimeSpaceMgr object (preferably one for all planets). ''' print("PLANET: " + str(planet)) # default values self._successPlanet = False self._planetName = None self._TSMgr = None if (planet.lower() in Planetlist.Planetlist and planet.lower() != "earth"): #wenn planet sich in der liste bekannter planeten befindet self._planetName = planet.lower() self._TSMgr = TSMgrObj # reference to the global TSMgr Jcty = self._TSMgr.time_get_julianCenturiesJ2000() self._keplerPlanet = Planetlist.getCurrentKeplerElem( self._planetName, Jcty) #get kepler elements self._keplerEarth = Planetlist.getCurrentKeplerElem( "earth", Jcty) #get kepler elements # astronomical almanach 2018 # schiefe der eklitptic epsilon = epsJ2000 + epsDot * T # T = julian centuries since J2000 # epsJ2000 = 84381.406 arcsec # epsDot = -46.836769 arcsec per julian century # self._eps = (84381.406 - # 46.836769*self._TSMgr.time_get_julianCenturiesJ2000() # )/3600 self._eps = MH.eps_deg(Jcty) # astronomic unit in km self._AU = 149597870.7 self._successPlanet = True
def calcPos(self, utcDateTime=None): # es müssen position von erde und planet immer gleichzeitig # berechnet werden, da wir den relativen richtungsvektor # zwischen beiden benötigen (und alles im heliozentr koord sys # berechnet wird) import src.EPH.EPH_ADD_math_helper as math_helper from src.EPH.EPH_ADD_wgs72_complete import wgs72_complete #update time in TSMgr #self._TSMgr.time_set_utcDateTime(utcDateTime) # ------------------------------------------------------------------- #get kepler elements Jcty = self._TSMgr.time_get_julianCenturiesJ2000() self._keplerPlanet = Planetlist.getCurrentKeplerElem( self._planetName, Jcty) #get kepler elements self._keplerEarth = Planetlist.getCurrentKeplerElem( "earth", Jcty) #get kepler elements # ------------------------------------------------------------------- # get eccentric anomaly with KEPLER EQUATION (newton verfahren) # PLANET self._keplerPlanet["E"] = Planetlist.keplerEquation( self._keplerPlanet["M"], self._keplerPlanet["e"]) # EARTH self._keplerEarth["E"] = Planetlist.keplerEquation( self._keplerEarth["M"], self._keplerEarth["e"]) # ------------------------------------------------------------------- # heliocentric coordinates in the planet's orbital plane # x-axis aligned from focus towards perihelion # PLANET xyzHelioOrbitP = self.__calc_helio_orbit_from_kepler( self._keplerPlanet) # EARTH xyzHelioOrbitE = self.__calc_helio_orbit_from_kepler(self._keplerEarth) # ------------------------------------------------------------------- # heliocentric coordinates in the ecliptic plane (earths orbit) # x-axis aligned towards the equinox # PLANET xyzHelioEclP = self.__calc_helio_ecliptical_from_helio_orbit( xyzHelioOrbitP, self._keplerPlanet) # EARTH xyzHelioEclE = self.__calc_helio_ecliptical_from_helio_orbit( xyzHelioOrbitE, self._keplerEarth) # ------------------------------------------------------------------- # relativer vektor von erde zu planet (Erde2Planet) im heliocentr. # ekliptikalen kartes. koordin system (entspricht geozentr. # ekliptikalen kartes. koord system) # Sonne2Planet = Sonne2Erde + Erde2Planet # Erde2Planet = Sonne2Planet - Sonne2Erde xyzHelioEcl_E2P = math_helper.vector_sub(xyzHelioEclP, xyzHelioEclE) # (entspricht geozentr. ekliptikalen kartes. koord system) planetGeoEclCartesian = tuple(xyzHelioEcl_E2P) # ------------------------------------------------------------------- # an dieser stelle ist der relative vektor vom zentrum der erde zum # gesuchten planeten im heliocentr, ecliptical cartes. coord sys # bekannt - es folgen umrechungen in koordin systeme für die # beobachtung von der erde aus. # ------------------------------------------------------------------- # drehe koordinate von ekliptical zu equatorial planetGeoEquCartesian = self.__rotate_from_ecliptical_to_equatorial( planetGeoEclCartesian, self._eps) #get geocentr equatorial pos of tele in KM!!! pos_tele_GeoEquCartesian = self._TSMgr.pos_get_ECI() planetTopoEquCartesian = [0, 0, 0] # um parallax effekte zu vermeiden, wird die position des teleskops # abgezogen. # Im falle von Mars würde die maximale parallaxe bei seinem letzten # Closest approach in 2018 Jul 27 (näheste annäherung an die erde) # ca 22.78 arcsec betragen (dist_min = 0.386 AU, # parallax_max = asin(earthradius in km / dist in km ), # parallax_max = asin(6378/57744778) ) for k in range(3): planetTopoEquCartesian[k] = ( planetGeoEquCartesian[k] - pos_tele_GeoEquCartesian[k] / self._AU) # # wandle in spherical koordinaten um # planetGeoEquSpherical = self.__calc_spherical_from_cartesian( # planetGeoEquCartesian) # wandle in spherical koordinaten um planetTopoEquSpherical = self.__calc_spherical_from_cartesian( planetTopoEquCartesian) return { "Ra": planetTopoEquSpherical[0], "De": planetTopoEquSpherical[1], "R": planetTopoEquSpherical[2] }
def calcMoonCoords_1stSolution(self): # self.__meanArgs_checkDF() self.calcMoonMeanArgumentsFromDate() L0 = self._moonMeanArguments['L0'] l = self._moonMeanArguments['l'] l_ = self._moonMeanArguments['l_'] F = self._moonMeanArguments['F'] D = self._moonMeanArguments['D'] # print('L0 ',L0) # print('l ',l) # print('l_ ',l_) # print('F ',F) # print('D ',D) term = [None]*13 term[0] = ( 22640 * MH.sin_deg(l) + 769 * MH.sin_deg(2*l) + 36 * MH.sin_deg(3*l) ) #grosse ungleicheit term[1] = -4586 * MH.sin_deg(l-2*D) #evektion term[2] = 2370 * MH.sin_deg(2*D) #variation term[3] = -668 * MH.sin_deg(l_) #jaehrliche ungleichheit term[4] = -412 * MH.sin_deg(2*F) #differenz in bahnlaenge und ekliptikaler laenge term[5] = -212 * MH.sin_deg(2*l-2*D) term[6] = -206 * MH.sin_deg(l+l_-2*D) term[7] = 192 * MH.sin_deg(l+2*D) term[8] = -165 * MH.sin_deg(l_-2*D) term[9] = 148 * MH.sin_deg(l-l_) term[10] = -125 * MH.sin_deg(D) #paralaktiche gleichung term[11] = -110 * MH.sin_deg(l+l_) term[12] = -55 * MH.sin_deg(2*F-2*D) ecl_Laenge = L0 + sum(term)/3600 self._moonCoordinates["ecl_Lon"] = ecl_Laenge %360 # Reset des "term" Arrays term = [None]*8 term[0] = 18520* MH.sin_deg( F + ecl_Laenge - L0 + 0.114*MH.sin_deg(2*F) +0.15*MH.sin_deg(l_) ) term[1] = -526 * MH.sin_deg( F - 2*D ) term[2] = 44 * MH.sin_deg( l + F - 2*D ) term[3] = -31 * MH.sin_deg( -l + F - 2*D ) term[4] = -25 * MH.sin_deg( -2*l + F ) term[5] = -23 * MH.sin_deg( l_ + F - 2*D ) term[6] = 21 * MH.sin_deg( -l + F ) term[7] = 11 * MH.sin_deg( -l_ + F - 2*D ) self._moonCoordinates["ecl_Lat"] = sum(term)/3600 # ergebnis ist im ekliptischen koordsys # wird benötigt im äquatorialen koordsys self.__calc_equatorialCoordinates()