Пример #1
0
    def generate_ROI(self, contours, progress_callback):
        """
        Generates new ROIs based on contour data.
        :param contours: dictionary of contours to turn into ROIs.
        :param progress_callback: signal that receives the current
                                  progress of the loading.
        """
        # Initialise variables needed for function
        patient_dict_container = PatientDictContainer()
        dataset_rtss = patient_dict_container.get("dataset_rtss")

        # Get existing ROIs
        existing_rois = []
        rois = patient_dict_container.get("dataset_rtss")
        if rois:
            for roi in rois.StructureSetROISequence:
                existing_rois.append(roi.ROIName)

        # Loop through each SUV level
        item_count = len(contours)
        current_progress = 60
        progress_increment = round((95 - 60) / item_count)
        for item in contours:
            # Delete ROI if it already exists to recreate it
            if item in existing_rois:
                dataset_rtss = ROI.delete_roi(dataset_rtss, item)

                # Update patient dict container
                current_rois = patient_dict_container.get("rois")
                keys = []
                for key, value in current_rois.items():
                    if value["name"] == item:
                        keys.append(key)
                for key in keys:
                    del current_rois[key]
                patient_dict_container.set("rois", current_rois)

            progress_callback.emit(("Generating ROIs", current_progress))
            current_progress += progress_increment

            # Loop through each slice
            for i in range(len(contours[item])):
                slider_id = contours[item][i][0]
                dataset = patient_dict_container.dataset[slider_id]
                pixlut = patient_dict_container.get("pixluts")
                pixlut = pixlut[dataset.SOPInstanceUID]
                z_coord = dataset.SliceLocation

                # List storing lists that contain all points for a
                # contour.
                single_array = []

                # Loop through each contour
                for j in range(len(contours[item][i][1])):
                    single_array.append([])
                    # Loop through every point in the contour
                    for point in contours[item][i][1][j]:
                        # Convert pixel coordinates to RCS points
                        rcs_pixels = ROI.pixel_to_rcs(pixlut, round(point[1]),
                                                      round(point[0]))
                        # Append RCS points to the single array
                        single_array[j].append(rcs_pixels[0])
                        single_array[j].append(rcs_pixels[1])
                        single_array[j].append(z_coord)

                # Create the ROI(s)
                for array in single_array:
                    rtss = ROI.create_roi(dataset_rtss, item, [{
                        'coords': array,
                        'ds': dataset
                    }], "")

                    # Save the updated rtss
                    patient_dict_container.set("dataset_rtss", rtss)
                    patient_dict_container.set("rois",
                                               ImageLoading.get_roi_info(rtss))
Пример #2
0
    def generate_roi(self, contours, progress_callback):
        """
        Generates new ROIs based on contour data.
        :param contours: dictionary of contours to turn into ROIs.
        :param progress_callback: signal to update loading progress
        """
        # Initialise variables needed for function
        patient_dict_container = PatientDictContainer()
        dataset_rtss = patient_dict_container.get("dataset_rtss")
        pixmaps = patient_dict_container.get("pixmaps_axial")
        slider_min = 0
        slider_max = len(pixmaps) - 1

        # Get existing ROIs
        existing_rois = []
        rois = patient_dict_container.get("dataset_rtss")
        if rois:
            for roi in rois.StructureSetROISequence:
                existing_rois.append(roi.ROIName)

        # Loop through each isodose level
        for item in contours:
            # Delete ROI if it already exists to recreate it
            if item in existing_rois:
                dataset_rtss = ROI.delete_roi(dataset_rtss, item)

                # Update patient dict container
                current_rois = patient_dict_container.get("rois")
                keys = []
                for key, value in current_rois.items():
                    if value["name"] == item:
                        keys.append(key)
                for key in keys:
                    del current_rois[key]
                patient_dict_container.set("rois", current_rois)

            # Calculate isodose ROI for each slice, skip if slice has no
            # contour data
            for i in range(slider_min, slider_max):
                if not len(contours[item][i]):
                    continue

                # Get required data for calculating ROI
                dataset = patient_dict_container.dataset[i]
                pixlut = patient_dict_container.get("pixluts")
                pixlut = pixlut[dataset.SOPInstanceUID]
                z_coord = dataset.SliceLocation
                curr_slice_uid = patient_dict_container.get("dict_uid")[i]
                dose_pixluts = patient_dict_container.get("dose_pixluts")
                dose_pixluts = dose_pixluts[curr_slice_uid]

                # Loop through each contour for each slice.
                # Convert the pixel points to RCS points, append z value
                single_array = []

                # Loop through each contour
                for j in range(len(contours[item][i])):
                    single_array.append([])
                    # Loop through every second point in the contour
                    for point in contours[item][i][j][::2]:
                        # Transform into dose pixel
                        dose_pixels = [
                            dose_pixluts[0][int(point[1])],
                            dose_pixluts[1][int(point[0])]
                        ]
                        # Transform into RCS pixel
                        rcs_pixels = ROI.pixel_to_rcs(pixlut,
                                                      round(dose_pixels[0]),
                                                      round(dose_pixels[1]))
                        # Append point coordinates to the single array
                        single_array[j].append(rcs_pixels[0])
                        single_array[j].append(rcs_pixels[1])
                        single_array[j].append(z_coord)

                # Create the ROI(s)
                for array in single_array:
                    rtss = ROI.create_roi(dataset_rtss, item, [{
                        'coords': array,
                        'ds': dataset
                    }], "DOSE_REGION")

                    # Save the updated rtss
                    patient_dict_container.set("dataset_rtss", rtss)
                    patient_dict_container.set("rois",
                                               ImageLoading.get_roi_info(rtss))

        progress_callback.emit(("Writing to RT Structure Set", 85))
Пример #3
0
class ActionHandler:
    """
    This class is responsible for initializing all of the actions that
    will be used by the MainPage and its components. There exists a
    1-to-1 relationship between this class and the MainPage. This class
    has access to the main page's attributes and components, however
    this access should only be used to provide functionality to the
    actions defined below. The instance of this class can be given to
    the main page's components in order to trigger actions.
    """
    def __init__(self, main_page):
        self.__main_page = main_page
        self.patient_dict_container = PatientDictContainer()
        self.is_four_view = False
        self.has_image_registration_single = False
        self.has_image_registration_four = False

        ##############################
        # Init all actions and icons #
        ##############################

        # Open patient
        self.icon_open = QtGui.QIcon()
        self.icon_open.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/open_patient_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_open = QtGui.QAction()
        self.action_open.setIcon(self.icon_open)
        self.action_open.setText("Open new patient")
        self.action_open.setIconVisibleInMenu(True)

        # Save RTSTRUCT changes action
        self.icon_save_structure = QtGui.QIcon()
        self.icon_save_structure.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/save_all_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_save_structure = QtGui.QAction()
        self.action_save_structure.setIcon(self.icon_save_structure)
        self.action_save_structure.setText("Save RTSTRUCT changes")
        self.action_save_structure.setIconVisibleInMenu(True)
        self.action_save_structure.triggered.connect(self.save_struct_handler)

        # Save as Anonymous Action
        self.icon_save_as_anonymous = QtGui.QIcon()
        self.icon_save_as_anonymous.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/anonlock_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_save_as_anonymous = QtGui.QAction()
        self.action_save_as_anonymous.setIcon(self.icon_save_as_anonymous)
        self.action_save_as_anonymous.setText("Save as Anonymous")
        self.action_save_as_anonymous.triggered.connect(
            self.anonymization_handler)

        # Exit action
        self.action_exit = QtGui.QAction()
        self.action_exit.setText("Exit")
        self.action_exit.triggered.connect(self.action_exit_handler)

        # Zoom Out Action
        self.icon_zoom_out = QtGui.QIcon()
        self.icon_zoom_out.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/zoom_out_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_zoom_out = QtGui.QAction()
        self.action_zoom_out.setIcon(self.icon_zoom_out)
        self.action_zoom_out.setIconVisibleInMenu(True)
        self.action_zoom_out.setText("Zoom Out")
        self.action_zoom_out.triggered.connect(self.zoom_out_handler)

        # Zoom In Action
        self.icon_zoom_in = QtGui.QIcon()
        self.icon_zoom_in.addPixmap(
            QtGui.QPixmap(
                resource_path("res/images/btn-icons/zoom_in_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_zoom_in = QtGui.QAction()
        self.action_zoom_in.setIcon(self.icon_zoom_in)
        self.action_zoom_in.setIconVisibleInMenu(True)
        self.action_zoom_in.setText("Zoom In")
        self.action_zoom_in.triggered.connect(self.zoom_in_handler)

        # Transect Action
        self.icon_transect = QtGui.QIcon()
        self.icon_transect.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/transect_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_transect = QtGui.QAction()
        self.action_transect.setIcon(self.icon_transect)
        self.action_transect.setIconVisibleInMenu(True)
        self.action_transect.setText("Transect")
        self.action_transect.triggered.connect(self.transect_handler)

        # Add-On Options Action
        self.icon_add_ons = QtGui.QIcon()
        self.icon_add_ons.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/management_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_add_ons = QtGui.QAction()
        self.action_add_ons.setIcon(self.icon_add_ons)
        self.action_add_ons.setIconVisibleInMenu(True)
        self.action_add_ons.setText("Add-On Options")
        self.action_add_ons.triggered.connect(self.add_on_options_handler)

        # Switch to Single View Action
        self.icon_one_view = QtGui.QIcon()
        self.icon_one_view.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/axial_view_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_one_view = QtGui.QAction()
        self.action_one_view.setIcon(self.icon_one_view)
        self.action_one_view.setIconVisibleInMenu(True)
        self.action_one_view.setText("One View")
        self.action_one_view.triggered.connect(self.one_view_handler)

        # Switch to 4 Views Action
        self.icon_four_views = QtGui.QIcon()
        self.icon_four_views.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/four_views_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_four_views = QtGui.QAction()
        self.action_four_views.setIcon(self.icon_four_views)
        self.action_four_views.setIconVisibleInMenu(True)
        self.action_four_views.setText("Four Views")
        self.action_four_views.triggered.connect(self.four_views_handler)

        # Show cut lines
        self.icon_cut_lines = QtGui.QIcon()
        self.icon_cut_lines.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/cut_line_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_show_cut_lines = QtGui.QAction()
        self.action_show_cut_lines.setIcon(self.icon_cut_lines)
        self.action_show_cut_lines.setIconVisibleInMenu(True)
        self.action_show_cut_lines.setText("Show Cut Lines")
        self.action_show_cut_lines.triggered.connect(self.cut_lines_handler)

        # Export Pyradiomics Action
        self.action_pyradiomics_export = QtGui.QAction()
        self.action_pyradiomics_export.setText("Export Pyradiomics")
        self.action_pyradiomics_export.triggered.connect(
            self.pyradiomics_export_handler)

        # Export DVH Action
        self.action_dvh_export = QtGui.QAction()
        self.action_dvh_export.setText("Export DVH")
        self.action_dvh_export.triggered.connect(self.export_dvh_handler)

        # Create Windowing menu
        self.icon_windowing = QtGui.QIcon()
        self.icon_windowing.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/windowing_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.menu_windowing = QtWidgets.QMenu()
        self.init_windowing_menu()

        self.windowing_window = Windowing(self)
        self.windowing_window.done_signal.connect(self.update_views)

        # Create Export menu
        self.icon_export = QtGui.QIcon()
        self.icon_export.addPixmap(
            QtGui.QPixmap(
                resource_path("res/images/btn-icons/export_purple_icon.png")),
            QtGui.QIcon.Normal,
            QtGui.QIcon.On,
        )
        self.menu_export = QtWidgets.QMenu()
        self.menu_export.setTitle("Export")
        self.menu_export.addAction(self.action_pyradiomics_export)
        self.menu_export.addAction(self.action_dvh_export)

        # Image Fusion Action
        self.icon_image_fusion = QtGui.QIcon()
        self.icon_image_fusion.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "res/images/btn-icons/image_fusion_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_image_fusion = QtGui.QAction()
        self.action_image_fusion.setIcon(self.icon_image_fusion)
        self.action_image_fusion.setIconVisibleInMenu(True)
        self.action_image_fusion.setText("Image Fusion")

    def init_windowing_menu(self):
        self.menu_windowing.setIcon(self.icon_windowing)
        self.menu_windowing.setTitle("Windowing")

        dict_windowing = self.patient_dict_container.get("dict_windowing")

        # Get the right order for windowing names
        names_ordered = sorted(dict_windowing.keys())
        if "Normal" in dict_windowing.keys():
            old_index = names_ordered.index("Normal")
            names_ordered.insert(0, names_ordered.pop(old_index))

        # Create actions for each windowing item
        def generate_triggered_handler(text_):
            def handler(state):
                self.windowing_handler(state, text_)

            return handler

        windowing_actions = []
        for name in names_ordered:
            text = str(name)
            action_windowing_item = QtGui.QAction(self.menu_windowing)
            action_windowing_item.triggered.connect(
                generate_triggered_handler(text))
            action_windowing_item.setText(text)
            windowing_actions.append(action_windowing_item)

        # For reasons beyond me, the actions have to be set as a child
        # of the windowing menu *and* later be added to the menu as
        # well. You can't do one or the other, otherwise the menu won't
        # populate. Feel free to try fix (or at least explain why the
        # action has to be set as the windowing menu's child twice)
        for item in windowing_actions:
            self.menu_windowing.addAction(item)

    def save_struct_handler(self):
        """
        If there are changes to the RTSTRUCT detected,
        save the changes to disk.
        """
        if self.patient_dict_container.get("rtss_modified"):
            self.__main_page.structures_tab.save_new_rtss_to_fixed_image_set()
        else:
            QtWidgets.QMessageBox.information(
                self.__main_page, "File not saved",
                "No changes to the RTSTRUCT file detected.")

    def zoom_out_handler(self):
        self.__main_page.zoom_out(self.is_four_view,
                                  self.has_image_registration_single,
                                  self.has_image_registration_four)

    def zoom_in_handler(self):
        self.__main_page.zoom_in(self.is_four_view,
                                 self.has_image_registration_single,
                                 self.has_image_registration_four)

    def windowing_handler(self, state, text):
        """
        Function triggered when a window is selected from the menu.
        :param state: Variable not used. Present to be able to use a
            lambda function.
        :param text: The name of the window selected.
        """
        ptct = PTCTDictContainer()
        mvd = MovingDictContainer()
        if ptct.is_empty() and mvd.is_empty():
            windowing_model(text, [True, False, False, False])
            self.update_views()
        else:
            self.windowing_window.set_window(text)
            self.windowing_window.show()

    def update_views(self):
        """
        function to update all dicom views
        """
        self.__main_page.update_views(update_3d_window=True)

    def anonymization_handler(self):
        """
        Function triggered when the Anonymization button is pressed from
        the menu.
        """

        save_reply = QtWidgets.QMessageBox.information(
            self.__main_page.main_window_instance, "Confirmation",
            "Are you sure you want to perform anonymization?",
            QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No)

        if save_reply == QtWidgets.QMessageBox.Yes:
            raw_dvh = self.patient_dict_container.get("raw_dvh")
            hashed_path = self.__main_page.call_class.run_anonymization(
                raw_dvh)
            self.patient_dict_container.set("hashed_path", hashed_path)
            # now that the radiomics data can just get copied across...
            # maybe skip this?
            radiomics_reply = QtWidgets.QMessageBox.information(
                self.__main_page.main_window_instance, "Confirmation",
                "Anonymization complete. Would you like to perform radiomics?",
                QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No)
            if radiomics_reply == QtWidgets.QMessageBox.Yes:
                self.__main_page.pyradi_trigger.emit(
                    self.patient_dict_container.path,
                    self.patient_dict_container.filepaths, hashed_path)

    def transect_handler(self):
        """
        Function triggered when the Transect button is pressed from the
        menu.
        """
        if self.is_four_view:
            view = self.__main_page.dicom_axial_view.view
            slider_id = self.__main_page.dicom_axial_view.slider.value()
        else:
            view = self.__main_page.dicom_single_view.view
            slider_id = self.__main_page.dicom_single_view.slider.value()
        dt = self.patient_dict_container.dataset[slider_id]
        row_s = dt.PixelSpacing[0]
        col_s = dt.PixelSpacing[1]
        dt.convert_pixel_data()
        pixmap = self.patient_dict_container.get("pixmaps_axial")[slider_id]
        self.__main_page.call_class.run_transect(self.__main_page, view,
                                                 pixmap,
                                                 dt._pixel_array.transpose(),
                                                 row_s, col_s)

    def add_on_options_handler(self):
        self.__main_page.add_on_options_controller.show_add_on_options()

    def one_view_handler(self):
        self.is_four_view = False

        self.__main_page.dicom_view.setCurrentWidget(
            self.__main_page.dicom_single_view)
        self.__main_page.dicom_single_view.update_view()

        if hasattr(self.__main_page, 'image_fusion_view'):
            self.has_image_registration_four = False
            self.has_image_registration_single = True
            if isinstance(self.__main_page.image_fusion_single_view,
                          ImageFusionAxialView):
                self.__main_page.image_fusion_view.setCurrentWidget(
                    self.__main_page.image_fusion_single_view)
                self.__main_page.image_fusion_single_view.update_view()

    def four_views_handler(self):
        self.is_four_view = True

        self.__main_page.dicom_view.setCurrentWidget(
            self.__main_page.dicom_four_views)
        self.__main_page.dicom_axial_view.update_view()

        if hasattr(self.__main_page, 'image_fusion_view'):
            self.has_image_registration_four = True
            self.has_image_registration_single = False
            if isinstance(self.__main_page.image_fusion_view, QStackedWidget):
                self.__main_page.image_fusion_view.setCurrentWidget(
                    self.__main_page.image_fusion_four_views)
                self.__main_page.image_fusion_view_axial.update_view()

    def cut_lines_handler(self):
        self.__main_page.toggle_cut_lines()

    def export_dvh_handler(self):
        if self.patient_dict_container.has_attribute("raw_dvh"):
            self.__main_page.dvh_tab.export_csv()
        else:
            QtWidgets.QMessageBox.information(
                self.__main_page, "Unable to export DVH",
                "DVH cannot be exported as there is no DVH present.",
                QtWidgets.QMessageBox.Ok)

    def pyradiomics_export_handler(self):
        self.__main_page.pyradi_trigger.emit(
            self.patient_dict_container.path,
            self.patient_dict_container.filepaths, '')

    def action_exit_handler(self):
        QtCore.QCoreApplication.exit(0)
def test_merge_rtss(qtbot, test_object):
    """Test merging rtss. This function creates a new rtss, then merges
    the new rtss with the old rtss and asserts that duplicated ROIs
    will be overwritten when the other being merged.

    :param test_object: test_object function, for accessing the shared
    TestStructureTab object.
    """
    patient_dict_container = PatientDictContainer()

    # Create a new rtss
    dataset = patient_dict_container.dataset[0]
    rtss_path = Path(patient_dict_container.path).joinpath('rtss.dcm')
    new_rtss = create_initial_rtss_from_ct(
        dataset, rtss_path,
        ImageLoading.get_image_uid_list(patient_dict_container.dataset))

    # Set ROIs
    rois = ImageLoading.get_roi_info(new_rtss)
    patient_dict_container.set("rois", rois)

    # Add a new ROI into the new rtss with the name of the first ROI in
    # the old rtss
    roi_name = test_object.rois.get(1)["name"]
    roi_coordinates = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
    new_rtss = create_roi(new_rtss, roi_name, [{
        'coords': roi_coordinates,
        'ds': dataset
    }])

    # Add a new ROI with a new name
    roi_name = "NewTestROI"
    new_rtss = create_roi(new_rtss, roi_name, [{
        'coords': roi_coordinates,
        'ds': dataset
    }])

    # Set ROIs
    rois = ImageLoading.get_roi_info(new_rtss)
    patient_dict_container.set("rois", rois)
    patient_dict_container.set("existing_file_rtss",
                               patient_dict_container.get("file_rtss"))
    patient_dict_container.set("dataset_rtss", new_rtss)

    # Merge the old and new rtss
    structure_tab = StructureTab()
    structure_tab.show_modified_indicator()
    qtbot.addWidget(structure_tab)

    def test_message_window():
        messagebox = structure_tab.findChild(QtWidgets.QMessageBox)
        assert messagebox is not None
        yes_button = messagebox.buttons()[1]
        qtbot.mouseClick(yes_button, QtCore.Qt.LeftButton, delay=1)

    QtCore.QTimer.singleShot(1000, test_message_window)

    structure_tab.save_new_rtss_to_fixed_image_set(auto=True)

    merged_rtss = pydicom.read_file(patient_dict_container.get("file_rtss"))
    merged_rois = ImageLoading.get_roi_info(merged_rtss)
    assert (len(test_object.rois) + 1 == len(merged_rois))
Пример #5
0
    def load(self, interrupt_flag, progress_callback):
        """
        :param interrupt_flag: A threading.Event() object that tells the function to stop loading.
        :param progress_callback: A signal that receives the current progress of the loading.
        :return: PatientDictContainer object containing all values related to the loaded DICOM files.
        """
        progress_callback.emit(("Creating datasets...", 0))
        try:
            path = os.path.dirname(os.path.commonprefix(self.selected_files))  # Gets the common root folder.
            read_data_dict, file_names_dict = ImageLoading.get_datasets(self.selected_files)
        except ImageLoading.NotAllowedClassError:
            raise ImageLoading.NotAllowedClassError

        # Populate the initial values in the PatientDictContainer singleton.
        patient_dict_container = PatientDictContainer()
        patient_dict_container.clear()
        patient_dict_container.set_initial_values(path, read_data_dict, file_names_dict)

        # As there is no way to interrupt a QRunnable, this method must check after every step whether or not the
        # interrupt flag has been set, in which case it will interrupt this method after the currently processing
        # function has finished running. It's not very pretty, and the thread will still run some functions for, in some
        # cases, up to a couple seconds after the close button on the Progress Window has been clicked, however it's
        # the best solution I could come up with. If you have a cleaner alternative, please make your contribution.
        if interrupt_flag.is_set():
            print("stopped")
            return False

        if 'rtss' in file_names_dict and 'rtdose' in file_names_dict:
            self.parent_window.signal_advise_calc_dvh.connect(self.update_calc_dvh)
            self.signal_request_calc_dvh.emit()

            while not self.advised_calc_dvh:
                pass

        if 'rtss' in file_names_dict:
            dataset_rtss = dcmread(file_names_dict['rtss'])

            progress_callback.emit(("Getting ROI info...", 10))
            rois = ImageLoading.get_roi_info(dataset_rtss)

            if interrupt_flag.is_set():  # Stop loading.
                print("stopped")
                return False

            progress_callback.emit(("Getting contour data...", 30))
            dict_raw_contour_data, dict_numpoints = ImageLoading.get_raw_contour_data(dataset_rtss)

            # Determine which ROIs are one slice thick
            dict_thickness = ImageLoading.get_thickness_dict(dataset_rtss, read_data_dict)

            if interrupt_flag.is_set():  # Stop loading.
                print("stopped")
                return False

            progress_callback.emit(("Getting pixel LUTs...", 50))
            dict_pixluts = ImageLoading.get_pixluts(read_data_dict)

            if interrupt_flag.is_set():  # Stop loading.
                print("stopped")
                return False

            # Add RTSS values to PatientDictContainer
            patient_dict_container.set("rois", rois)
            patient_dict_container.set("raw_contour", dict_raw_contour_data)
            patient_dict_container.set("num_points", dict_numpoints)
            patient_dict_container.set("pixluts", dict_pixluts)

            if 'rtdose' in file_names_dict and self.calc_dvh:
                dataset_rtdose = dcmread(file_names_dict['rtdose'])

                # Spawn-based platforms (i.e Windows and MacOS) have a large overhead when creating a new process, which
                # ends up making multiprocessing on these platforms more expensive than linear calculation. As such,
                # multiprocessing is only available on Linux until a better solution is found.
                fork_safe_platforms = ['Linux']
                if platform.system() in fork_safe_platforms:
                    progress_callback.emit(("Calculating DVHs...", 60))
                    raw_dvh = ImageLoading.multi_calc_dvh(dataset_rtss, dataset_rtdose, rois, dict_thickness)
                else:
                    progress_callback.emit(("Calculating DVHs... (This may take a while)", 60))
                    raw_dvh = ImageLoading.calc_dvhs(dataset_rtss, dataset_rtdose, rois, dict_thickness, interrupt_flag)

                if interrupt_flag.is_set():  # Stop loading.
                    print("stopped")
                    return False

                progress_callback.emit(("Converging to zero...", 80))
                dvh_x_y = ImageLoading.converge_to_0_dvh(raw_dvh)

                if interrupt_flag.is_set():  # Stop loading.
                    print("stopped")
                    return False

                # Add DVH values to PatientDictContainer
                patient_dict_container.set("raw_dvh", raw_dvh)
                patient_dict_container.set("dvh_x_y", dvh_x_y)
                patient_dict_container.set("dvh_outdated", False)

                return True
            else:
                return True

        return True
Пример #6
0
class IsodoseTab(QtWidgets.QWidget):

    request_update_isodoses = QtCore.pyqtSignal()

    def __init__(self):
        QtWidgets.QWidget.__init__(self)
        self.patient_dict_container = PatientDictContainer()
        self.rx_dose_in_cgray = self.patient_dict_container.get("rx_dose_in_cgray")
        self.color_dict = self.init_color_isod()
        self.color_squares = self.init_color_squares()
        self.checkboxes = self.init_checkboxes()

        self.isodose_tab_layout = QtWidgets.QVBoxLayout()
        self.isodose_tab_layout.setAlignment(QtCore.Qt.AlignTop)
        self.isodose_tab_layout.setSpacing(0)
        self.init_layout()

        self.setLayout(self.isodose_tab_layout)

    def init_layout(self):
        for i in range(0, len(self.checkboxes)):
            widget_isodose = QtWidgets.QWidget()
            layout_isodose = QtWidgets.QHBoxLayout(widget_isodose)
            layout_isodose.setAlignment(QtCore.Qt.AlignLeft)
            layout_isodose.addWidget(self.color_squares[i])
            layout_isodose.addWidget(self.checkboxes[i])
            self.isodose_tab_layout.addWidget(widget_isodose)

    def init_color_isod(self):
        """
        Create a list containing the colors for each isodose.

        :return: Dictionary where the key is the percentage of isodose and the value a QColor object.
        """
        roi_color = {
            107: QtGui.QColor(131, 0, 0),
            105: QtGui.QColor(185, 0, 0),
            100: QtGui.QColor(255, 46, 0),
            95: QtGui.QColor(255, 161, 0),
            90: QtGui.QColor(253, 255, 0),
            80: QtGui.QColor(0, 255, 0),
            70: QtGui.QColor(0, 143, 0),
            60: QtGui.QColor(0, 255, 255),
            30: QtGui.QColor(33, 0, 255),
            10: QtGui.QColor(11, 0, 134)
        }

        return roi_color

    def init_color_squares(self):
        """
        Create a color square.
        """
        list_of_squares = []
        for key, color in self.color_dict.items():
            list_of_squares.append(self.draw_color_square(color))

        return list_of_squares

    def init_checkboxes(self):
        """
        Initialize the checkbox objects.
        """
        list_of_checkboxes = []
        # Values of Isodoses
        list_of_doses = []
        for percentage in isodose_percentages:
            dose = int(self.rx_dose_in_cgray * (percentage / 100))
            list_of_doses.append(dose)

        # Checkboxes
        first_iteration = True
        for i in range(10):
            if first_iteration:
                checkbox = QtWidgets.QCheckBox("%s %% / %s cGy [Max]" % (str(isodose_percentages[i]),
                                                                         str(list_of_doses[i])))
                first_iteration = False
            else:
                checkbox = QtWidgets.QCheckBox("%s %% / %s cGy" % (str(isodose_percentages[i]), str(list_of_doses[i])))
            checkbox.clicked.connect(lambda state, text=isodose_percentages[i]: self.checked_dose(state, text))
            checkbox.setStyleSheet("font: 10pt \"Laksaman\";")
            list_of_checkboxes.append(checkbox)

        return list_of_checkboxes

    # Function triggered when a dose level selected
    # Updates the list of selected isodoses and dicom view
    def checked_dose(self, state, isod_value):
        """
        Function triggered when the checkbox of a structure is checked / unchecked.
        Update the list of selected structures.
        Update the DICOM view.

        :param state: True if the checkbox is checked, False otherwise.
        :param isod_value: Percentage of isodose.
        """

        selected_doses = self.patient_dict_container.get("selected_doses")

        if state:
            # Add the dose to the list of selected doses
            selected_doses.append(isod_value)
        else:
            # Remove dose from list of previously selected doses
            selected_doses.remove(isod_value)

        self.patient_dict_container.set("selected_doses", selected_doses)

        # Update the dicom view
        self.request_update_isodoses.emit()

    def draw_color_square(self, color):
        """
        Create a color square.
        :param color: QColor object
        :return: Color square widget.
        """
        color_square_label = QtWidgets.QLabel()
        color_square_pix = QtGui.QPixmap(15, 15)
        color_square_pix.fill(color)
        color_square_label.setPixmap(color_square_pix)

        return color_square_label
Пример #7
0
def create_initial_model_batch():
    """
    This function initializes all the attributes in the PatientDictContainer
    required for the operation of batch processing. It is a modified version
    of create_initial_model. This function only sets RTSS values in the
    PatientDictContainer if an RTSS exists. If one does not exist it will only
    be created if needed, whereas the original create_initial_model assumes
    that one is always created. This function also does not set SR attributes
    in the PatientDictContainer, as SRs are only needed for SR2CSV functions,
    which do not require the use of the PatientDictContainer.
    """
    ##############################
    #  LOAD PATIENT INFORMATION  #
    ##############################
    patient_dict_container = PatientDictContainer()

    dataset = patient_dict_container.dataset
    filepaths = patient_dict_container.filepaths
    patient_dict_container.set("rtss_modified", False)

    if 'WindowWidth' in dataset[0]:
        if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat):
            window = int(dataset[0].WindowWidth)
        elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue):
            window = int(dataset[0].WindowWidth[1])
    else:
        window = int(400)

    if 'WindowCenter' in dataset[0]:
        if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat):
            level = int(dataset[0].WindowCenter)
        elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue):
            level = int(dataset[0].WindowCenter[1])
    else:
        level = int(800)

    patient_dict_container.set("window", window)
    patient_dict_container.set("level", level)

    # Check to see if the imageWindowing.csv file exists
    if os.path.exists(data_path('imageWindowing.csv')):
        # If it exists, read data from file into the self.dict_windowing
        # variable
        dict_windowing = {}
        with open(data_path('imageWindowing.csv'), "r") \
                as fileInput:
            next(fileInput)
            dict_windowing["Normal"] = [window, level]
            for row in fileInput:
                # Format: Organ - Scan - Window - Level
                items = [item for item in row.split(',')]
                dict_windowing[items[0]] = [int(items[2]), int(items[3])]
    else:
        # If csv does not exist, initialize dictionary with default values
        dict_windowing = {
            "Normal": [window, level],
            "Lung": [1600, -300],
            "Bone": [1400, 700],
            "Brain": [160, 950],
            "Soft Tissue": [400, 800],
            "Head and Neck": [275, 900]
        }

    patient_dict_container.set("dict_windowing", dict_windowing)

    pixel_values = convert_raw_data(dataset)
    # Calculate the ratio between x axis and y axis of 3 views
    pixmap_aspect = {}
    pixel_spacing = dataset[0].PixelSpacing
    slice_thickness = dataset[0].SliceThickness
    pixmap_aspect["axial"] = pixel_spacing[1] / pixel_spacing[0]
    pixmap_aspect["sagittal"] = pixel_spacing[1] / slice_thickness
    pixmap_aspect["coronal"] = slice_thickness / pixel_spacing[0]
    pixmaps_axial, pixmaps_coronal, pixmaps_sagittal = \
        get_pixmaps(pixel_values, window, level, pixmap_aspect)

    patient_dict_container.set("pixmaps_axial", pixmaps_axial)
    patient_dict_container.set("pixmaps_coronal", pixmaps_coronal)
    patient_dict_container.set("pixmaps_sagittal", pixmaps_sagittal)
    patient_dict_container.set("pixel_values", pixel_values)
    patient_dict_container.set("pixmap_aspect", pixmap_aspect)

    basic_info = get_basic_info(dataset[0])
    patient_dict_container.set("basic_info", basic_info)

    patient_dict_container.set("dict_uid", dict_instance_uid(dataset))

    # Set RTSS attributes
    if patient_dict_container.has_modality("rtss"):
        patient_dict_container.set("file_rtss", filepaths['rtss'])
        patient_dict_container.set("dataset_rtss", dataset['rtss'])
        dict_raw_contour_data, dict_numpoints = \
            ImageLoading.get_raw_contour_data(dataset['rtss'])
        patient_dict_container.set("raw_contour", dict_raw_contour_data)
        dicom_tree_rtss = DicomTree(filepaths['rtss'])
        patient_dict_container.set("dict_dicom_tree_rtss",
                                   dicom_tree_rtss.dict)

        patient_dict_container.set(
            "list_roi_numbers",
            ordered_list_rois(patient_dict_container.get("rois")))
        patient_dict_container.set("selected_rois", [])

        patient_dict_container.set("dict_polygons_axial", {})
        patient_dict_container.set("dict_polygons_sagittal", {})
        patient_dict_container.set("dict_polygons_coronal", {})

    # Set RTDOSE attributes
    if patient_dict_container.has_modality("rtdose"):
        dicom_tree_rtdose = DicomTree(filepaths['rtdose'])
        patient_dict_container.set("dict_dicom_tree_rtdose",
                                   dicom_tree_rtdose.dict)

        patient_dict_container.set("dose_pixluts", get_dose_pixluts(dataset))

        patient_dict_container.set("selected_doses", [])

        # overwritten if RTPLAN is present.
        patient_dict_container.set("rx_dose_in_cgray", 1)

    # Set RTPLAN attributes
    if patient_dict_container.has_modality("rtplan"):
        # the TargetPrescriptionDose is type 3 (optional), so it may not be
        # there However, it is preferable to the sum of the beam doses
        # DoseReferenceStructureType is type 1 (value is mandatory), but it
        # can have a value of ORGAN_AT_RISK rather than TARGET in which case
        # there will *not* be a TargetPrescriptionDose and even if it is
        # TARGET, that's no guarantee that TargetPrescriptionDose will be
        # encoded and have a value
        rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"])
        patient_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray)

        dicom_tree_rtplan = DicomTree(filepaths['rtplan'])
        patient_dict_container.set("dict_dicom_tree_rtplan",
                                   dicom_tree_rtplan.dict)
Пример #8
0
    def load_images(cls, patient_files, required_classes):
        """
        Loads required datasets for the selected patient.
        :param patient_files: dictionary of classes and patient files.
        :param required_classes: list of classes required for the
                                 selected/current process.
        :return: True if all required datasets found, false otherwise.
        """
        files = []
        found_classes = set()

        # Loop through each item in patient_files
        for key, value in patient_files.items():
            # If the item is an allowed class
            if key in cls.allowed_classes:
                for i in range(len(value)):
                    # Add item's files to the files list
                    files.extend(value[i].get_files())

                # Get the modality name
                modality_name = cls.allowed_classes.get(key).get('name')

                # If the modality name is not found_classes, add it
                if modality_name not in found_classes \
                        and modality_name in required_classes:
                    found_classes.add(modality_name)

        # Get the difference between required classes and found classes
        class_diff = set(required_classes).difference(found_classes)

        # If the dataset is missing required files, pass on it
        if len(class_diff) > 0:
            print("Skipping dataset. Missing required file(s) {}".format(
                class_diff))
            return False

        # Try to get the datasets from the selected files
        try:
            # Convert paths to a common file system representation
            for i, file in enumerate(files):
                files[i] = Path(file).as_posix()
            read_data_dict, file_names_dict = cls.get_datasets(files)
            path = os.path.dirname(
                os.path.commonprefix(list(file_names_dict.values())))
        # Otherwise raise an exception (OnkoDICOM does not support the
        # selected file type)
        except ImageLoading.NotAllowedClassError:
            raise ImageLoading.NotAllowedClassError

        # Populate the initial values in the PatientDictContainer
        patient_dict_container = PatientDictContainer()
        patient_dict_container.clear()
        patient_dict_container.set_initial_values(path, read_data_dict,
                                                  file_names_dict)

        # If an RT Struct is included, set relevant values in the
        # PatientDictContainer
        if 'rtss' in file_names_dict:
            dataset_rtss = dcmread(file_names_dict['rtss'])
            rois = ImageLoading.get_roi_info(dataset_rtss)
            dict_raw_contour_data, dict_numpoints = \
                ImageLoading.get_raw_contour_data(dataset_rtss)
            dict_pixluts = ImageLoading.get_pixluts(read_data_dict)

            # Add RT Struct values to PatientDictContainer
            patient_dict_container.set("rois", rois)
            patient_dict_container.set("raw_contour", dict_raw_contour_data)
            patient_dict_container.set("num_points", dict_numpoints)
            patient_dict_container.set("pixluts", dict_pixluts)

        return True
Пример #9
0
class DVHTab(QtWidgets.QWidget):
    def __init__(self):
        QtWidgets.QWidget.__init__(self)
        self.patient_dict_container = PatientDictContainer()
        self.dvh_calculated = self.patient_dict_container.has_attribute(
            "raw_dvh")
        self.rt_dose = self.patient_dict_container.dataset['rtdose']

        self.raw_dvh = None
        self.dvh_x_y = None
        self.plot = None

        self.selected_rois = self.patient_dict_container.get("selected_rois")

        self.dvh_tab_layout = QtWidgets.QVBoxLayout()

        try:
            # Import the DVH from RT Dose
            self.import_rtdose()
        except (AttributeError, KeyError):
            # Construct the layout based on whether or not the DVH has
            # already been calculated.
            # TODO: convert to logging
            print("DVH data not in RT Dose.")
            if self.dvh_calculated:
                self.init_layout_dvh()
            else:
                self.init_layout_no_dvh()

        self.setLayout(self.dvh_tab_layout)

    def init_layout_dvh(self):
        """
        Initialise the DVH tab's layout when DVH data exists.
        """
        self.raw_dvh = self.patient_dict_container.get("raw_dvh")
        self.dvh_x_y = self.patient_dict_container.get("dvh_x_y")

        self.plot = self.plot_dvh()
        widget_plot = FigureCanvas(self.plot)

        button_layout = QtWidgets.QHBoxLayout()

        button_export = QtWidgets.QPushButton("Export DVH to CSV")
        button_export.clicked.connect(self.export_csv)
        button_layout.addWidget(button_export)

        # Added Recalculate button
        button_calc_dvh = QtWidgets.QPushButton("Recalculate DVH")
        button_calc_dvh.clicked.connect(self.prompt_calc_dvh)
        button_layout.addWidget(button_calc_dvh)

        self.dvh_tab_layout.setAlignment(QtCore.Qt.Alignment())
        self.dvh_tab_layout.addWidget(widget_plot)
        self.dvh_tab_layout.addLayout(button_layout)

    def init_layout_no_dvh(self):
        """
        Initialise the DVH tab's layout when DVH data does not exist.
        """
        button_calc_dvh = QtWidgets.QPushButton("Calculate DVH")
        button_calc_dvh.clicked.connect(self.prompt_calc_dvh)

        self.dvh_tab_layout.setAlignment(QtCore.Qt.AlignCenter
                                         | QtCore.Qt.AlignCenter)
        self.dvh_tab_layout.addWidget(button_calc_dvh)

    def clear_layout(self):
        """
        Clear the layout of the DVH tab.
        """
        for i in reversed(range(self.dvh_tab_layout.count())):
            item = self.dvh_tab_layout.itemAt(i)
            if item.widget():
                item.widget().setParent(None)
            else:
                for j in reversed(range(item.count())):
                    item.itemAt(j).widget().setParent(None)

    def plot_dvh(self):
        """
        :return: DVH plot using Matplotlib library.
        """
        # Initialisation of the plots
        fig, ax = plt.subplots()
        fig.subplots_adjust(0.1, 0.15, 1, 1)
        # Maximum value for x axis
        max_xlim = 0

        # Plot for all the ROIs selected in the left column of the window
        for roi in self.selected_rois:
            dvh = self.raw_dvh[int(roi)]

            # Plot only the ROIs whose volume is non equal to 0
            if dvh.volume != 0:
                # Bincenters, obtained from the dvh object, give the x axis values
                # (Doses originally in Gy unit)
                bincenters = self.dvh_x_y[roi]['bincenters']
                # print(self.dvh_x_y[roi])

                # Counts, obtained from the dvh object, give the y axis values
                # (values between 0 and dvh.volume)
                counts = self.dvh_x_y[roi]['counts']

                # Color of the line is the same as the color shown in the left column of the window
                color = self.patient_dict_container.get("roi_color_dict")[roi]
                color_R = color.red() / 255
                color_G = color.green() / 255
                color_B = color.blue() / 255

                plt.plot(100 * bincenters,
                         100 * counts / dvh.volume,
                         label=dvh.name,
                         color=[color_R, color_G, color_B])

                # Update the maximum value for x axis (usually different between ROIs)
                if (100 * bincenters[-1]) > max_xlim:
                    max_xlim = 100 * bincenters[-1]

                plt.xlabel('Dose [%s]' % 'cGy')
                plt.ylabel('Volume [%s]' % '%')
                if dvh.name:
                    plt.legend(loc='lower center', bbox_to_anchor=(0, 1, 5, 5))

        # Set the range values for x and y axis
        ax.set_ylim([0, 105])
        ax.set_xlim([0, max_xlim + 3])

        # Create the grids on the plot
        major_ticks_y = np.arange(0, 105, 20)
        minor_ticks_y = np.arange(0, 105, 5)
        major_ticks_x = np.arange(0, max_xlim + 250, 1000)
        minor_ticks_x = np.arange(0, max_xlim + 250, 250)
        ax.set_xticks(major_ticks_x)
        ax.set_xticks(minor_ticks_x, minor=True)
        ax.set_yticks(major_ticks_y)
        ax.set_yticks(minor_ticks_y, minor=True)
        ax.grid(which='minor', alpha=0.2)
        ax.grid(which='major', alpha=0.5)

        # Add the legend at the bottom left of the graph
        if len(self.selected_rois) != 0:
            ax.legend(loc='upper left', bbox_to_anchor=(-0.1, -0.15), ncol=4)

        plt.subplots_adjust(bottom=0.3)

        return fig

    def prompt_calc_dvh(self):
        """
        Prompt for DVH calculation.
        """
        if platform.system() == "Linux":
            choice = \
                QtWidgets.QMessageBox.question(
                    self, "Calculate DVHs?",
                    "Would you like to (re)calculate DVHs?",
                    QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No)

            if choice == QtWidgets.QMessageBox.Yes:
                progress_window = \
                    CalculateDVHProgressWindow(
                        self,
                        QtCore.Qt.WindowTitleHint |
                        QtCore.Qt.WindowCloseButtonHint)
                progress_window.signal_dvh_calculated.connect(
                    self.dvh_calculation_finished)
                self.patient_dict_container.set("dvh_outdated", False)
                progress_window.exec_()

                self.export_rtdose()
        else:
            stylesheet_path = ""

            # Select appropriate style sheet
            if platform.system() == 'Darwin':
                stylesheet_path = Path.cwd().joinpath('res', 'stylesheet.qss')
            else:
                stylesheet_path = Path.cwd().joinpath(
                    'res', 'stylesheet-win-linux.qss')

            # Create a message box and add attributes
            mb = QtWidgets.QMessageBox()
            mb.setIcon(QtWidgets.QMessageBox.Question)
            mb.setWindowTitle("Calculate DVHs?")
            mb.setText("Would you like to (re)calculate DVHs?")
            button_no = QtWidgets.QPushButton("No")
            button_yes = QtWidgets.QPushButton("Yes")
            """ We want the buttons 'No' & 'Yes' to be displayed in that exact order. QMessageBox displays buttons in
                respect to their assigned roles. (0 first, then 0 and so on) 'AcceptRole' is 0 and 'RejectRole' is 1 
                thus by counterintuitively assigning 'No' to 'AcceptRole' and 'Yes' to 'RejectRole' the buttons are 
                positioned as desired.
            """
            mb.addButton(button_no, QtWidgets.QMessageBox.AcceptRole)
            mb.addButton(button_yes, QtWidgets.QMessageBox.RejectRole)

            # Apply stylesheet to the message box and add icon to the window
            mb.setStyleSheet(open(stylesheet_path).read())
            mb.setWindowIcon(
                QtGui.QIcon(
                    resource_path(Path.cwd().joinpath('res', 'images',
                                                      'btn-icons',
                                                      'onkodicom_icon.png'))))

            mb.exec_()

            if mb.clickedButton() == button_yes:
                progress_window = CalculateDVHProgressWindow(
                    self, QtCore.Qt.WindowTitleHint
                    | QtCore.Qt.WindowCloseButtonHint)
                progress_window.signal_dvh_calculated.connect(
                    self.dvh_calculation_finished)
                self.patient_dict_container.set("dvh_outdated", False)
                progress_window.exec_()

                self.export_rtdose()

    def dvh_calculation_finished(self):
        # Clear the screen
        self.clear_layout()
        self.dvh_calculated = True
        self.init_layout_dvh()

    def update_plot(self):
        if self.dvh_calculated:
            # Get new list of selected rois that have DVHs calculated
            self.selected_rois = [
                roi for roi in self.patient_dict_container.get("selected_rois")
                if roi in self.raw_dvh.keys()
            ]

            # Clear the current layout
            self.clear_layout()

            # If the DVH has become outdated, show the user an indicator advising them such.
            if self.patient_dict_container.get("dvh_outdated"):
                self.display_outdated_indicator()

            # Re-draw the plot and add to layout
            self.init_layout_dvh()

    def export_csv(self):
        path = self.patient_dict_container.path
        basic_info = self.patient_dict_container.get("basic_info")
        if not os.path.isdir(path + '/CSV'):
            os.mkdir(path + '/CSV')
        dvh2csv(self.raw_dvh, path + "/CSV/", 'DVH_' + basic_info['id'],
                basic_info['id'])
        QtWidgets.QMessageBox.information(
            self, "Message",
            "The DVH Data was saved successfully in your directory!",
            QtWidgets.QMessageBox.Ok)

    def export_rtdose(self):
        """
        Exports DVH data into the RT Dose file in the dataset directory.
        """
        dvh2rtdose(self.raw_dvh)
        QtWidgets.QMessageBox.information(
            self, "Message",
            "The DVH Data was saved successfully in your directory!",
            QtWidgets.QMessageBox.Ok)

    def import_rtdose(self):
        """
        Import DVH data from an RT Dose.
        """
        # Get DVH data
        result = rtdose2dvh()

        # If there is DVH data
        if bool(result):
            incomplete = result["diff"]
            result.pop("diff")
            dvh_x_y = ImageLoading.converge_to_0_dvh(result)
            self.patient_dict_container.set("raw_dvh", result)
            self.patient_dict_container.set("dvh_x_y", dvh_x_y)

            # If incomplete, tell the user about this
            if incomplete:
                self.patient_dict_container.set("dvh_outdated", True)
                self.display_outdated_indicator()

            # Initialise the display
            self.dvh_calculation_finished()
        else:
            result.pop("diff")
            self.init_layout_no_dvh()

    def display_outdated_indicator(self):
        self.modified_indicator_widget = QtWidgets.QWidget()
        self.modified_indicator_widget.setContentsMargins(8, 5, 8, 5)
        # self.modified_indicator_widget.setFixedHeight(35)
        modified_indicator_layout = QtWidgets.QHBoxLayout()
        modified_indicator_layout.setAlignment(QtCore.Qt.AlignLeft
                                               | QtCore.Qt.AlignLeft)

        modified_indicator_icon = QtWidgets.QLabel()
        modified_indicator_icon.setPixmap(
            QtGui.QPixmap(
                resource_path("res/images/btn-icons/alert_icon.png")))
        modified_indicator_layout.addWidget(modified_indicator_icon)

        modified_indicator_text = QtWidgets.QLabel(
            "Contours have been modified since DVH calculation. Some DVHs may "
            "now be out of date.")
        modified_indicator_text.setStyleSheet("color: red")
        modified_indicator_layout.addWidget(modified_indicator_text)

        self.modified_indicator_widget.setLayout(modified_indicator_layout)

        self.dvh_tab_layout.addWidget(self.modified_indicator_widget,
                                      QtCore.Qt.AlignTop | QtCore.Qt.AlignTop)
Пример #10
0
class StructureTab(QtWidgets.QWidget):

    request_update_structures = QtCore.pyqtSignal()

    def __init__(self):
        QtWidgets.QWidget.__init__(self)
        self.patient_dict_container = PatientDictContainer()
        self.rois = self.patient_dict_container.get("rois")
        self.color_dict = self.init_color_roi()
        self.patient_dict_container.set("roi_color_dict", self.color_dict)

        self.structure_tab_layout = QtWidgets.QVBoxLayout()

        self.roi_delete_handler = ROIDelOption(self.structure_modified)
        self.roi_draw_handler = ROIDrawOption(self.structure_modified)

        # Create scrolling area widget to contain the content.
        self.scroll_area = QtWidgets.QScrollArea()
        self.scroll_area.setWidgetResizable(True)

        self.scroll_area_content = QtWidgets.QWidget(self.scroll_area)
        self.scroll_area.ensureWidgetVisible(self.scroll_area_content)

        # Create layout for checkboxes and colour squares
        self.layout_content = QtWidgets.QVBoxLayout(self.scroll_area_content)
        self.layout_content.setContentsMargins(0, 0, 0, 0)
        self.layout_content.setSpacing(0)
        self.layout_content.setAlignment(QtCore.Qt.AlignTop)

        # Create list of standard organ and volume names
        self.standard_organ_names = []
        self.standard_volume_names = []
        self.init_standard_names()

        # Create StructureWidget objects
        self.update_content()

        # Create ROI manipulation buttons
        self.button_roi_draw = QtWidgets.QPushButton()
        self.button_roi_delete = QtWidgets.QPushButton()
        self.roi_buttons = QtWidgets.QWidget()
        self.init_roi_buttons()

        # Set layout
        self.structure_tab_layout.addWidget(self.scroll_area)
        self.structure_tab_layout.addWidget(self.roi_buttons)
        self.setLayout(self.structure_tab_layout)

    def init_color_roi(self):
        """
        Create a dictionary containing the colors for each structure.
        :return: Dictionary where the key is the ROI number and the value a QColor object.
        """
        roi_color = dict()

        roi_contour_info = self.patient_dict_container.get(
            "dict_dicom_tree_rtss")['ROI Contour Sequence']

        if len(roi_contour_info) > 0:
            for item, roi_dict in roi_contour_info.items():
                # Note: the keys of roiContourInfo are "item 0", "item 1", etc.
                # As all the ROI structures are identified by the ROI numbers in the whole code,
                # we get the ROI number 'roi_id' by using the member 'list_roi_numbers'
                id = item.split()[1]
                roi_id = self.patient_dict_container.get("list_roi_numbers")[
                    int(id)]

                if 'ROI Display Color' in roi_contour_info[item]:
                    RGB_list = roi_contour_info[item]['ROI Display Color'][0]
                    red = RGB_list[0]
                    green = RGB_list[1]
                    blue = RGB_list[2]
                else:
                    seed(1)
                    red = randint(0, 255)
                    green = randint(0, 255)
                    blue = randint(0, 255)

                roi_color[roi_id] = QtGui.QColor(red, green, blue)

        return roi_color

    def init_standard_names(self):
        """
        Create two lists containing standard organ and standard volume names as set by the Add-On options.
        """
        with open(resource_path('src/data/csv/organName.csv'), 'r') as f:
            self.standard_organ_names = []

            csv_input = csv.reader(f)
            header = next(f)  # Ignore the "header" of the column
            for row in csv_input:
                self.standard_organ_names.append(row[0])

        with open(resource_path('src/data/csv/volumeName.csv'), 'r') as f:
            self.standard_volume_names = []

            csv_input = csv.reader(f)
            header = next(f)  # Ignore the "header" of the column
            for row in csv_input:
                self.standard_volume_names.append(row[1])

    def init_roi_buttons(self):
        icon_roi_delete = QtGui.QIcon()
        icon_roi_delete.addPixmap(
            QtGui.QPixmap(
                resource_path('src/res/images/btn-icons/delete_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)

        icon_roi_draw = QtGui.QIcon()
        icon_roi_draw.addPixmap(
            QtGui.QPixmap(
                resource_path('src/res/images/btn-icons/draw_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)

        #self.button_roi_delete.setToolButtonStyle(QtCore.Qt.ToolButtonTextUnderIcon)
        self.button_roi_delete.setIcon(icon_roi_delete)
        self.button_roi_delete.setText("Delete ROI")
        self.button_roi_delete.clicked.connect(self.roi_delete_clicked)

        #self.button_roi_draw.setToolButtonStyle(QtCore.Qt.ToolButtonTextUnderIcon)
        self.button_roi_draw.setIcon(icon_roi_draw)
        self.button_roi_draw.setText("Draw ROI")
        self.button_roi_draw.clicked.connect(self.roi_draw_clicked)

        layout_roi_buttons = QtWidgets.QHBoxLayout(self.roi_buttons)
        layout_roi_buttons.setContentsMargins(0, 0, 0, 0)
        layout_roi_buttons.addWidget(self.button_roi_draw)
        layout_roi_buttons.addWidget(self.button_roi_delete)

    def update_content(self):
        """
        Add the contents (color square and checkbox) in the scrolling area widget.
        """
        # Clear the children
        for i in reversed(range(self.layout_content.count())):
            self.layout_content.itemAt(i).widget().setParent(None)

        row = 0
        for roi_id, roi_dict in self.rois.items():
            # Creates a widget representing each ROI
            structure = StructureWidget(roi_id, self.color_dict[roi_id],
                                        roi_dict['name'], self)
            structure.structure_renamed.connect(self.structure_modified)
            self.layout_content.addWidget(structure)
            row += 1

        self.scroll_area.setStyleSheet(
            "QScrollArea {background-color: #ffffff; border-style: none;}")
        self.scroll_area_content.setStyleSheet(
            "QWidget {background-color: #ffffff; border-style: none;}")

        self.scroll_area.setWidget(self.scroll_area_content)

    def roi_delete_clicked(self):
        self.roi_delete_handler.show_roi_delete_options()

    def roi_draw_clicked(self):
        self.roi_draw_handler.show_roi_draw_options()

    def structure_modified(self, changes):
        """
        Executes when a structure is renamed/deleted. Displays indicator that structure has changed.
        changes is a tuple of (new_dataset, description_of_changes)
        description_of_changes follows the format {"type_of_change": value_of_change}.
        Examples: {"rename": ["TOOTH", "TEETH"]} represents that the TOOTH structure has been renamed to TEETH.
        {"delete": ["TEETH", "MAXILLA"]} represents that the TEETH and MAXILLA structures have been deleted.
        {"draw": "AORTA"} represents that a new structure AORTA has been drawn.
        """

        new_dataset = changes[0]
        change_description = changes[1]

        # If this is the first time the RTSS has been modified, create a modified indicator giving the user the option
        # to save their new file.
        if self.patient_dict_container.get("rtss_modified") is False:
            self.show_modified_indicator()

        # If this is the first change made to the RTSS file, update the dataset with the new one so that OnkoDICOM
        # starts working off this dataset rather than the original RTSS file.
        self.patient_dict_container.set("rtss_modified", True)
        self.patient_dict_container.set("dataset_rtss", new_dataset)

        # Refresh ROIs in main page
        self.patient_dict_container.set("rois",
                                        ImageLoading.get_roi_info(new_dataset))
        self.rois = self.patient_dict_container.get("rois")
        contour_data = ImageLoading.get_raw_contour_data(new_dataset)
        self.patient_dict_container.set("raw_contour", contour_data[0])
        self.patient_dict_container.set("num_points", contour_data[1])
        pixluts = ImageLoading.get_pixluts(self.patient_dict_container.dataset)
        self.patient_dict_container.set("pixluts", pixluts)
        self.patient_dict_container.set(
            "list_roi_numbers",
            ordered_list_rois(self.patient_dict_container.get("rois")))
        self.patient_dict_container.set("selected_rois", [])
        self.patient_dict_container.set("dict_polygons", {})

        if "draw" in change_description:
            dicom_tree_rtss = DicomTree(None)
            dicom_tree_rtss.dataset = new_dataset
            dicom_tree_rtss.dict = dicom_tree_rtss.dataset_to_dict(
                dicom_tree_rtss.dataset)
            self.patient_dict_container.set("dict_dicom_tree_rtss",
                                            dicom_tree_rtss.dict)
            self.color_dict = self.init_color_roi()
            self.patient_dict_container.set("roi_color_dict", self.color_dict)
            if self.patient_dict_container.has_attribute("raw_dvh"):
                # DVH will be outdated once changes to it are made, and recalculation will be required.
                self.patient_dict_container.set("dvh_outdated", True)

        if self.patient_dict_container.has_modality("raw_dvh"):
            # Rename structures in DVH list
            if "rename" in changes[1]:
                new_raw_dvh = self.patient_dict_container.get("raw_dvh")
                for key, dvh in new_raw_dvh.items():
                    if dvh.name == change_description["rename"][0]:
                        dvh.name = change_description["rename"][1]
                        break

                self.patient_dict_container.set("raw_dvh", new_raw_dvh)

            # Remove structures from DVH list - the only visible effect of this section is the exported DVH csv
            if "delete" in changes[1]:
                list_of_deleted = []
                new_raw_dvh = self.patient_dict_container.get("raw_dvh")
                for key, dvh in new_raw_dvh.items():
                    if dvh.name in change_description["delete"]:
                        list_of_deleted.append(key)
                for key in list_of_deleted:
                    new_raw_dvh.pop(key)
                self.patient_dict_container.set("raw_dvh", new_raw_dvh)

        # Refresh ROIs in DVH tab and DICOM View
        self.request_update_structures.emit()

        # Refresh structure tab
        self.update_content()

    def show_modified_indicator(self):
        self.modified_indicator_widget = QtWidgets.QWidget()
        self.modified_indicator_widget.setContentsMargins(8, 5, 8, 5)
        modified_indicator_layout = QtWidgets.QHBoxLayout()
        modified_indicator_layout.setAlignment(QtCore.Qt.AlignLeft)

        modified_indicator_icon = QtWidgets.QLabel()
        modified_indicator_icon.setPixmap(
            QtGui.QPixmap(
                resource_path("src/res/images/btn-icons/alert_icon.png")))
        modified_indicator_layout.addWidget(modified_indicator_icon)

        modified_indicator_text = QtWidgets.QLabel(
            "Structures have been modified")
        modified_indicator_text.setStyleSheet("color: red")
        modified_indicator_layout.addWidget(modified_indicator_text)

        self.modified_indicator_widget.setLayout(modified_indicator_layout)
        self.modified_indicator_widget.mouseReleaseEvent = self.save_new_rtss  # When the widget is clicked, save the rtss

        # Temporarily remove the ROI modify buttons, add this indicator, then add them back again.
        # This ensure that the modifier appears above the ROI modify buttons.
        self.structure_tab_layout.removeWidget(self.roi_buttons)
        self.structure_tab_layout.addWidget(self.modified_indicator_widget)
        self.structure_tab_layout.addWidget(self.roi_buttons)

    def structure_checked(self, state, roi_id):
        """
        Function triggered when the checkbox of a structure is checked / unchecked.
        Update the list of selected structures.
        Update the plot of the DVH and the DICOM view.

        :param state: True if the checkbox is checked, False otherwise.
        :param roi_id: ROI number
        """

        selected_rois = self.patient_dict_container.get("selected_rois")
        if state:
            selected_rois.append(roi_id)
        else:
            selected_rois.remove(roi_id)

        self.patient_dict_container.set("selected_rois", selected_rois)

        self.request_update_structures.emit()

    def save_new_rtss(self, event=None):
        rtss_directory = str(Path(
            self.patient_dict_container.get("file_rtss")))

        confirm_save = QtWidgets.QMessageBox.information(
            self, "Confirmation",
            "Are you sure you want to save the modified RTSTRUCT file? This will "
            "overwrite the existing file. This is not reversible.",
            QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No)

        if confirm_save == QtWidgets.QMessageBox.Yes:
            self.patient_dict_container.get("dataset_rtss").save_as(
                rtss_directory)
            QtWidgets.QMessageBox.about(self.parentWidget(), "File saved",
                                        "The RTSTRUCT file has been saved.")
            self.patient_dict_container.set("rtss_modified", False)
            self.modified_indicator_widget.setParent(None)
Пример #11
0
    def create_new_rtstruct(cls, progress_callback):
        """
        Generates a new RTSS and edits the patient dict container. Used
        for batch processing.
        """
        # Get common directory
        patient_dict_container = PatientDictContainer()
        file_path = patient_dict_container.filepaths.values()
        file_path = Path(os.path.commonpath(file_path))

        # Get new RT Struct file path
        file_path = str(file_path.joinpath("rtss.dcm"))

        # Create RT Struct file
        progress_callback.emit(("Generating RT Structure Set", 60))
        ct_uid_list = ImageLoading.get_image_uid_list(
            patient_dict_container.dataset)
        ds = ROI.create_initial_rtss_from_ct(patient_dict_container.dataset[0],
                                             file_path, ct_uid_list)
        ds.save_as(file_path)

        # Add RT Struct file path to patient dict container
        patient_dict_container.filepaths['rtss'] = file_path
        filepaths = patient_dict_container.filepaths

        # Add RT Struct dataset to patient dict container
        patient_dict_container.dataset['rtss'] = ds
        dataset = patient_dict_container.dataset

        # Set some patient dict container attributes
        patient_dict_container.set("file_rtss", filepaths['rtss'])
        patient_dict_container.set("dataset_rtss", dataset['rtss'])

        dicom_tree_rtss = DicomTree(filepaths['rtss'])
        patient_dict_container.set("dict_dicom_tree_rtss",
                                   dicom_tree_rtss.dict)

        dict_pixluts = ImageLoading.get_pixluts(patient_dict_container.dataset)
        patient_dict_container.set("pixluts", dict_pixluts)

        rois = ImageLoading.get_roi_info(ds)
        patient_dict_container.set("rois", rois)

        patient_dict_container.set("selected_rois", [])
        patient_dict_container.set("dict_polygons_axial", {})

        patient_dict_container.set("rtss_modified", True)
Пример #12
0
class ActionHandler:
    """
    This class is responsible for initializing all of the actions that will be used by the MainPage and its components.
    There exists a 1-to-1 relationship between this class and the MainPage. This class has access to the main page's
    attributes and components, however this access should only be used to provide functionality to the actions defined
    below. The instance of this class can be given to the main page's components in order to trigger actions.
    """
    def __init__(self, main_page):
        self.__main_page = main_page
        self.patient_dict_container = PatientDictContainer()

        ##############################
        # Init all actions and icons #
        ##############################

        # Open patient
        self.icon_open = QtGui.QIcon()
        self.icon_open.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/open_patient_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_open = QtWidgets.QAction()
        self.action_open.setIcon(self.icon_open)
        self.action_open.setText("Open new patient")
        self.action_open.setIconVisibleInMenu(True)

        # Save RTSTRUCT changes action
        self.icon_save_structure = QtGui.QIcon()
        self.icon_save_structure.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/save_all_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_save_structure = QtWidgets.QAction()
        self.action_save_structure.setIcon(self.icon_save_structure)
        self.action_save_structure.setText("Save RTSTRUCT changes")
        self.action_save_structure.setIconVisibleInMenu(True)
        self.action_save_structure.triggered.connect(self.save_struct_handler)

        # Save as Anonymous Action
        self.icon_save_as_anonymous = QtGui.QIcon()
        self.icon_save_as_anonymous.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/anonlock_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_save_as_anonymous = QtWidgets.QAction()
        self.action_save_as_anonymous.setIcon(self.icon_save_as_anonymous)
        self.action_save_as_anonymous.setText("Save as Anonymous")
        self.action_save_as_anonymous.triggered.connect(
            self.anonymization_handler)

        # Exit action
        self.action_exit = QtWidgets.QAction()
        self.action_exit.setText("Exit")
        self.action_exit.triggered.connect(self.action_exit_handler)

        # Zoom Out Action
        self.icon_zoom_out = QtGui.QIcon()
        self.icon_zoom_out.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/zoom_out_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_zoom_out = QtWidgets.QAction()
        self.action_zoom_out.setIcon(self.icon_zoom_out)
        self.action_zoom_out.setIconVisibleInMenu(True)
        self.action_zoom_out.setText("Zoom Out")
        self.action_zoom_out.triggered.connect(
            self.__main_page.dicom_view.zoom_out)

        # Zoom In Action
        self.icon_zoom_in = QtGui.QIcon()
        self.icon_zoom_in.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/zoom_in_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_zoom_in = QtWidgets.QAction()
        self.action_zoom_in.setIcon(self.icon_zoom_in)
        self.action_zoom_in.setIconVisibleInMenu(True)
        self.action_zoom_in.setText("Zoom In")
        self.action_zoom_in.triggered.connect(
            self.__main_page.dicom_view.zoom_in)

        # Transect Action
        self.icon_transect = QtGui.QIcon()
        self.icon_transect.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/transect_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_transect = QtWidgets.QAction()
        self.action_transect.setIcon(self.icon_transect)
        self.action_transect.setIconVisibleInMenu(True)
        self.action_transect.setText("Transect")
        self.action_transect.triggered.connect(self.transect_handler)

        # Add-On Options Action
        self.icon_add_ons = QtGui.QIcon()
        self.icon_add_ons.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/management_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.action_add_ons = QtWidgets.QAction()
        self.action_add_ons.setIcon(self.icon_add_ons)
        self.action_add_ons.setIconVisibleInMenu(True)
        self.action_add_ons.setText("Add-On Options")
        self.action_add_ons.triggered.connect(self.add_on_options_handler)

        # Export Clinical Data Action
        self.action_clinical_data_export = QtWidgets.QAction()
        self.action_clinical_data_export.setText("Export Clinical Data")
        # TODO self.action_clinical_data_export.triggered.connect(clinical data check)

        # Export Pyradiomics Action
        self.action_pyradiomics_export = QtWidgets.QAction()
        self.action_pyradiomics_export.setText("Export Pyradiomics")
        self.action_pyradiomics_export.triggered.connect(
            self.pyradiomics_export_handler)

        # Export DVH Action
        self.action_dvh_export = QtWidgets.QAction()
        self.action_dvh_export.setText("Export DVH")
        self.action_dvh_export.triggered.connect(self.export_dvh_handler)

        # Create Windowing menu
        self.icon_windowing = QtGui.QIcon()
        self.icon_windowing.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/windowing_purple_icon.png")),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.menu_windowing = QtWidgets.QMenu()
        self.init_windowing_menu()

        # Create Export menu
        self.icon_export = QtGui.QIcon()
        self.icon_export.addPixmap(
            QtGui.QPixmap(
                resource_path(
                    "src/res/images/btn-icons/export_purple_icon.png")),
            QtGui.QIcon.Normal,
            QtGui.QIcon.On,
        )
        self.menu_export = QtWidgets.QMenu()
        self.menu_export.setTitle("Export")
        self.menu_export.addAction(self.action_clinical_data_export)
        self.menu_export.addAction(self.action_pyradiomics_export)
        self.menu_export.addAction(self.action_dvh_export)

    def init_windowing_menu(self):
        self.menu_windowing.setIcon(self.icon_windowing)
        self.menu_windowing.setTitle("Windowing")

        dict_windowing = self.patient_dict_container.get("dict_windowing")

        # Get the right order for windowing names
        names_ordered = sorted(dict_windowing.keys())
        if "Normal" in dict_windowing.keys():
            old_index = names_ordered.index("Normal")
            names_ordered.insert(0, names_ordered.pop(old_index))

        # Create actions for each windowing item
        windowing_actions = []
        for name in names_ordered:
            text = str(name)
            action_windowing_item = QtWidgets.QAction(self.menu_windowing)
            action_windowing_item.triggered.connect(
                lambda state, text=name: self.windowing_handler(state, text))
            action_windowing_item.setText(text)
            windowing_actions.append(action_windowing_item)

        # For reasons beyond me, the actions have to be set as a child of the windowing menu *and* later be added to
        # the menu as well. You can't do one or the other, otherwise the menu won't populate.
        # Feel free to try fix (or at least explain why the action has to be set as the windowing menu's child twice)
        for item in windowing_actions:
            self.menu_windowing.addAction(item)

    def save_struct_handler(self):
        """
        If there are changes to the RTSTRUCT detected, save the changes to disk.
        """
        if self.patient_dict_container.get("rtss_modified"):
            self.__main_page.structures_tab.save_new_rtss()
        else:
            QtWidgets.QMessageBox.information(
                self.__main_page, "File not saved",
                "No changes to the RTSTRUCT file detected.")

    def windowing_handler(self, state, text):
        """
        Function triggered when a window is selected from the menu.
        :param state: Variable not used. Present to be able to use a lambda function.
        :param text: The name of the window selected.
        """
        # Get the values for window and level from the dict
        windowing_limits = self.patient_dict_container.get(
            "dict_windowing")[text]

        # Set window and level to the new values
        window = windowing_limits[0]
        level = windowing_limits[1]

        # Update the dictionary of pixmaps with the update window and level values
        pixel_values = self.patient_dict_container.get("pixel_values")
        pixmaps = get_pixmaps(pixel_values, window, level)

        self.patient_dict_container.set("window", window)
        self.patient_dict_container.set("level", level)
        self.patient_dict_container.set("pixmaps", pixmaps)

        self.__main_page.update_views()

    def anonymization_handler(self):
        """
        Function triggered when the Anonymization button is pressed from the menu.
        """

        save_reply = QtWidgets.QMessageBox.information(
            self.__main_page.main_window_instance, "Confirmation",
            "Are you sure you want to perform anonymization?",
            QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No)

        if save_reply == QtWidgets.QMessageBox.Yes:
            raw_dvh = self.patient_dict_container.get("raw_dvh")
            hashed_path = self.__main_page.call_class.runAnonymization(raw_dvh)
            self.patient_dict_container.set("hashed_path", hashed_path)
            # now that the radiomics data can just get copied across... maybe skip this?
            radiomics_reply = QtWidgets.QMessageBox.information(
                self.__main_page.main_window_instance, "Confirmation",
                "Anonymization complete. Would you like to perform radiomics?",
                QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No)
            if radiomics_reply == QtWidgets.QMessageBox.Yes:
                self.__main_page.pyradi_trigger.emit(
                    self.patient_dict_container.path,
                    self.patient_dict_container.filepaths, hashed_path)

    def transect_handler(self):
        """
        Function triggered when the Transect button is pressed from the menu.
        """
        id = self.__main_page.dicom_view.slider.value()
        dt = self.patient_dict_container.dataset[id]
        rowS = dt.PixelSpacing[0]
        colS = dt.PixelSpacing[1]
        dt.convert_pixel_data()
        pixmap = self.patient_dict_container.get("pixmaps")[id]
        self.__main_page.call_class.runTransect(
            self.__main_page, self.__main_page.dicom_view.view, pixmap,
            dt._pixel_array.transpose(), rowS, colS)

    def add_on_options_handler(self):
        self.__main_page.add_on_options_controller.show_add_on_options()

    def export_dvh_handler(self):
        if self.patient_dict_container.has_attribute("raw_dvh"):
            self.__main_page.dvh_tab.export_csv()
        else:
            QtWidgets.QMessageBox.information(
                self.__main_page, "Unable to export DVH",
                "DVH cannot be exported as there is no DVH present.",
                QtWidgets.QMessageBox.Ok)

    def pyradiomics_export_handler(self):
        self.__main_page.pyradi_trigger.emit(
            self.patient_dict_container.path,
            self.patient_dict_container.filepaths, '')

    def action_exit_handler(self):
        QtCore.QCoreApplication.exit(0)
Пример #13
0
    def load_temp_rtss(self, path, progress_callback, interrupt_flag):
        """
        Generate a temporary rtss and load its data into
        PatientDictContainer
        :param path: str. The common root folder of all DICOM files.
        :param progress_callback: A signal that receives the current
        progress of the loading.
        :param interrupt_flag: A threading.Event() object that tells the
        function to stop loading.
        """
        progress_callback.emit(("Generating temporary rtss...", 20))
        patient_dict_container = PatientDictContainer()
        rtss_path = Path(path).joinpath('rtss.dcm')
        uid_list = ImageLoading.get_image_uid_list(
            patient_dict_container.dataset)
        rtss = create_initial_rtss_from_ct(patient_dict_container.dataset[0],
                                           rtss_path, uid_list)

        if interrupt_flag.is_set():  # Stop loading.
            print("stopped")
            return False

        progress_callback.emit(("Loading temporary rtss...", 50))
        # Set ROIs
        rois = ImageLoading.get_roi_info(rtss)
        patient_dict_container.set("rois", rois)

        # Set pixluts
        dict_pixluts = ImageLoading.get_pixluts(patient_dict_container.dataset)
        patient_dict_container.set("pixluts", dict_pixluts)

        # Add RT Struct file path and dataset to patient dict container
        patient_dict_container.filepaths['rtss'] = rtss_path
        patient_dict_container.dataset['rtss'] = rtss

        # Set some patient dict container attributes
        patient_dict_container.set("file_rtss", rtss_path)
        patient_dict_container.set("dataset_rtss", rtss)
        ordered_dict = DicomTree(None).dataset_to_dict(rtss)
        patient_dict_container.set("dict_dicom_tree_rtss", ordered_dict)
        patient_dict_container.set("selected_rois", [])
Пример #14
0
def windowing_model(text, init):
    """
    Function triggered when a window is selected from the menu.
    :param text: The name of the window selected.
    :param init: list of bool to determine which views are chosen
    """
    patient_dict_container = PatientDictContainer()
    moving_dict_container = MovingDictContainer()
    pt_ct_dict_container = PTCTDictContainer()

    # Get the values for window and level from the dict
    windowing_limits = patient_dict_container.get("dict_windowing")[text]

    # Set window and level to the new values
    window = windowing_limits[0]
    level = windowing_limits[1]

    # Update the dictionary of pixmaps with the update window and
    # level values
    if init[0]:
        pixel_values = patient_dict_container.get("pixel_values")
        pixmap_aspect = patient_dict_container.get("pixmap_aspect")
        pixmaps_axial, pixmaps_coronal, pixmaps_sagittal = \
            get_pixmaps(pixel_values, window, level, pixmap_aspect)

        patient_dict_container.set("pixmaps_axial", pixmaps_axial)
        patient_dict_container.set("pixmaps_coronal", pixmaps_coronal)
        patient_dict_container.set("pixmaps_sagittal", pixmaps_sagittal)
        patient_dict_container.set("window", window)
        patient_dict_container.set("level", level)

    # Update CT
    if init[2]:
        ct_pixel_values = pt_ct_dict_container.get("ct_pixel_values")
        ct_pixmap_aspect = pt_ct_dict_container.get("ct_pixmap_aspect")
        ct_pixmaps_axial, ct_pixmaps_coronal, ct_pixmaps_sagittal = \
            get_pixmaps(ct_pixel_values, window, level, ct_pixmap_aspect,
                        fusion=True)

        pt_ct_dict_container.set("ct_pixmaps_axial", ct_pixmaps_axial)
        pt_ct_dict_container.set("ct_pixmaps_coronal", ct_pixmaps_coronal)
        pt_ct_dict_container.set("ct_pixmaps_sagittal", ct_pixmaps_sagittal)
        pt_ct_dict_container.set("ct_window", window)
        pt_ct_dict_container.set("ct_level", level)

    # Update PT
    if init[1]:
        pt_pixel_values = pt_ct_dict_container.get("pt_pixel_values")
        pt_pixmap_aspect = pt_ct_dict_container.get("pt_pixmap_aspect")
        pt_pixmaps_axial, pt_pixmaps_coronal, pt_pixmaps_sagittal = \
            get_pixmaps(pt_pixel_values, window, level, pt_pixmap_aspect,
                        fusion=True, color="Heat")

        pt_ct_dict_container.set("pt_pixmaps_axial", pt_pixmaps_axial)
        pt_ct_dict_container.set("pt_pixmaps_coronal", pt_pixmaps_coronal)
        pt_ct_dict_container.set("pt_pixmaps_sagittal", pt_pixmaps_sagittal)
        pt_ct_dict_container.set("pt_window", window)
        pt_ct_dict_container.set("pt_level", level)

    # Update Fusion
    if init[3]:
        fusion_axial, fusion_coronal, fusion_sagittal, tfm = \
            get_fused_window(level, window)
        patient_dict_container.set("color_axial", fusion_axial)
        patient_dict_container.set("color_coronal", fusion_coronal)
        patient_dict_container.set("color_sagittal", fusion_sagittal)
        moving_dict_container.set("tfm", tfm)
Пример #15
0
class StructureTab(QtWidgets.QWidget):
    request_update_structures = QtCore.Signal()

    def __init__(self, moving=False):
        QtWidgets.QWidget.__init__(self)
        self.patient_dict_container = PatientDictContainer()
        self.moving_dict_container = MovingDictContainer()
        self.rois = self.patient_dict_container.get("rois")
        self.color_dict = self.init_color_roi(self.patient_dict_container)
        self.patient_dict_container.set("roi_color_dict", self.color_dict)
        self.structure_tab_layout = QtWidgets.QVBoxLayout()

        self.roi_delete_handler = ROIDelOption(
            self.fixed_container_structure_modified)
        self.roi_draw_handler = ROIDrawOption(
            self.fixed_container_structure_modified)
        self.roi_manipulate_handler = ROIManipulateOption(
            self.fixed_container_structure_modified)

        # Create scrolling area widget to contain the content.
        self.scroll_area = QtWidgets.QScrollArea()
        self.scroll_area.setWidgetResizable(True)

        self.scroll_area_content = QtWidgets.QWidget(self.scroll_area)
        self.scroll_area.ensureWidgetVisible(self.scroll_area_content)

        # Create layout for checkboxes and colour squares
        self.layout_content = QtWidgets.QVBoxLayout(self.scroll_area_content)
        self.layout_content.setContentsMargins(0, 0, 0, 0)
        self.layout_content.setSpacing(0)
        self.layout_content.setAlignment(QtCore.Qt.AlignTop
                                         | QtCore.Qt.AlignTop)

        # Create list of standard organ and volume names
        self.standard_organ_names = []
        self.standard_volume_names = []
        self.init_standard_names()

        # Create StructureWidget objects
        self.update_content()

        # Create a modified indicator
        self.modified_indicator_widget = QtWidgets.QWidget()
        self.modified_indicator_widget.setContentsMargins(8, 5, 8, 5)
        modified_indicator_layout = QtWidgets.QHBoxLayout()
        modified_indicator_layout.setAlignment(QtCore.Qt.AlignLeft
                                               | QtCore.Qt.AlignLeft)

        modified_indicator_icon = QtWidgets.QLabel()
        modified_indicator_icon.setPixmap(
            QtGui.QPixmap(
                resource_path("res/images/btn-icons/alert_icon.png")))
        modified_indicator_layout.addWidget(modified_indicator_icon)

        modified_indicator_text = QtWidgets.QLabel(
            "Structures have been modified")
        modified_indicator_text.setStyleSheet("color: red")
        modified_indicator_layout.addWidget(modified_indicator_text)

        self.modified_indicator_widget.setLayout(modified_indicator_layout)
        self.modified_indicator_widget.mouseReleaseEvent = self.\
            save_new_rtss_to_fixed_image_set
        self.modified_indicator_widget.setVisible(False)

        # Create ROI manipulation buttons
        self.button_roi_manipulate = QtWidgets.QPushButton()
        self.button_roi_draw = QtWidgets.QPushButton()
        self.button_roi_delete = QtWidgets.QPushButton()
        self.roi_buttons = QtWidgets.QWidget()
        self.init_roi_buttons()

        # Set layout
        self.structure_tab_layout.addWidget(self.scroll_area)
        self.structure_tab_layout.addWidget(self.modified_indicator_widget)
        self.structure_tab_layout.addWidget(self.roi_buttons)
        self.setLayout(self.structure_tab_layout)

    def init_color_roi(self, dict_container):
        """
        Create a dictionary containing the colors for each structure.
        :param: either PatientDictContainer or MovingDictContainer
        :return: Dictionary where the key is the ROI number and the value a
        QColor object.
        """
        roi_color = dict()
        roi_contour_info = dict_container.get(
            "dict_dicom_tree_rtss")['ROI Contour Sequence']

        if len(roi_contour_info) > 0:
            for item, roi_dict in roi_contour_info.items():
                # Note: the keys of roiContourInfo are "item 0", "item 1",
                # etc. As all the ROI structures are identified by the ROI
                # numbers in the whole code, we get the ROI number 'roi_id'
                # by using the member 'list_roi_numbers'
                id = item.split()[1]
                roi_id = dict_container.get("list_roi_numbers")[int(id)]
                if 'ROI Display Color' in roi_contour_info[item]:
                    RGB_list = roi_contour_info[item]['ROI Display Color'][0]
                    red = RGB_list[0]
                    green = RGB_list[1]
                    blue = RGB_list[2]
                else:
                    seed(1)
                    red = randint(0, 255)
                    green = randint(0, 255)
                    blue = randint(0, 255)

                roi_color[roi_id] = QtGui.QColor(red, green, blue)

        return roi_color

    def init_standard_names(self):
        """
        Create two lists containing standard organ and standard volume names
        as set by the Add-On options.
        """
        with open(data_path('organName.csv'), 'r') as f:
            self.standard_organ_names = []

            csv_input = csv.reader(f)
            header = next(f)  # Ignore the "header" of the column
            for row in csv_input:
                self.standard_organ_names.append(row[0])

        with open(data_path('volumeName.csv'), 'r') as f:
            self.standard_volume_names = []

            csv_input = csv.reader(f)
            header = next(f)  # Ignore the "header" of the column
            for row in csv_input:
                self.standard_volume_names.append(row[1])

    def init_roi_buttons(self):
        icon_roi_delete = QtGui.QIcon()
        icon_roi_delete.addPixmap(
            QtGui.QPixmap(
                resource_path('res/images/btn-icons/delete_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)

        icon_roi_draw = QtGui.QIcon()
        icon_roi_draw.addPixmap(
            QtGui.QPixmap(resource_path('res/images/btn-icons/draw_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)

        icon_roi_manipulate = QtGui.QIcon()
        icon_roi_manipulate.addPixmap(
            QtGui.QPixmap(
                resource_path('res/images/btn-icons/manipulate_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)

        self.button_roi_delete.setIcon(icon_roi_delete)
        self.button_roi_delete.setText("Delete ROI")
        self.button_roi_delete.clicked.connect(self.roi_delete_clicked)

        self.button_roi_draw.setIcon(icon_roi_draw)
        self.button_roi_draw.setText("Draw ROI")
        self.button_roi_draw.clicked.connect(self.roi_draw_clicked)

        self.button_roi_manipulate.setIcon(icon_roi_manipulate)
        self.button_roi_manipulate.setText("Manipulate ROI")
        self.button_roi_manipulate.clicked.connect(self.roi_manipulate_clicked)

        layout_roi_buttons = QtWidgets.QVBoxLayout(self.roi_buttons)
        layout_roi_buttons.setContentsMargins(0, 0, 0, 0)
        layout_roi_buttons.addWidget(self.button_roi_draw)
        layout_roi_buttons.addWidget(self.button_roi_manipulate)
        layout_roi_buttons.addWidget(self.button_roi_delete)

    def update_ui(self, moving=False):
        """
        Update the UI of Structure Tab when a new patient is opened
        """
        self.patient_dict_container = PatientDictContainer()
        self.rois = self.patient_dict_container.get("rois")
        self.color_dict = self.init_color_roi(self.patient_dict_container)
        self.patient_dict_container.set("roi_color_dict", self.color_dict)
        if hasattr(self, "modified_indicator_widget"):
            self.modified_indicator_widget.setParent(None)
        self.update_content()

    def update_content(self):
        """
        Add the contents (color square and checkbox) in the scrolling area
        widget.
        """
        # Clear the children
        for i in reversed(range(self.layout_content.count())):
            self.layout_content.itemAt(i).widget().setParent(None)

        row = 0
        for roi_id, roi_dict in self.rois.items():
            # Creates a widget representing each ROI
            color = self.color_dict[roi_id]
            color.setAlpha(255)
            structure = StructureWidget(roi_id, color, roi_dict['name'], self)
            if roi_id in self.patient_dict_container.get("selected_rois"):
                structure.checkbox.setChecked(Qt.Checked)
            structure.structure_renamed.\
                connect(self.fixed_container_structure_modified)
            self.layout_content.addWidget(structure)
            row += 1

        self.scroll_area.setStyleSheet(
            "QScrollArea {background-color: #ffffff; border-style: none;}")
        self.scroll_area_content.setStyleSheet(
            "QWidget {background-color: #ffffff; border-style: none;}")

        self.scroll_area.setWidget(self.scroll_area_content)

    def roi_delete_clicked(self):
        self.roi_delete_handler.show_roi_delete_options()

    def roi_draw_clicked(self):
        self.roi_draw_handler.show_roi_draw_options()

    def roi_manipulate_clicked(self):
        """ Open ROI Manipulate Window """
        self.roi_manipulate_handler.show_roi_manipulate_options(
            self.color_dict)

    def moving_container_structure_modified(self, changes):
        """
        Executes when a structure of moving container is modified.
        Changes is a tuple of (new_dataset,
        description_of_changes)
        description_of_changes follows the format
        {"type_of_change": value_of_change}.
        Examples:
        {"rename": ["TOOTH", "TEETH"]} represents that the TOOTH structure has
            been renamed to TEETH.
        {"delete": ["TEETH", "MAXILLA"]} represents that the TEETH and MAXILLA
            structures have been deleted.
        {"draw": "AORTA"} represents that a new structure AORTA has been drawn.
        Note: Use {"draw": None} after multiple ROIs are generated
        (E.g., from ISO2ROI functionality), and use {"transfer":None} for
         ROI Transfer instead of calling this function
        multiple times. This will trigger auto save.
        """
        new_dataset = changes[0]
        change_description = changes[1]

        # If this is the first change made to the RTSS file, update the
        # dataset with the new one so that OnkoDICOM starts working off this
        # dataset rather than the original RTSS file.
        self.moving_dict_container.set("rtss_modified", True)
        self.moving_dict_container.set("dataset_rtss", new_dataset)

        # Refresh ROIs in main page
        self.moving_dict_container.set("rois",
                                       ImageLoading.get_roi_info(new_dataset))
        self.rois = self.moving_dict_container.get("rois")
        contour_data = ImageLoading.get_raw_contour_data(new_dataset)
        self.moving_dict_container.set("raw_contour", contour_data[0])
        self.moving_dict_container.set("num_points", contour_data[1])
        pixluts = ImageLoading.get_pixluts(self.moving_dict_container.dataset)
        self.moving_dict_container.set("pixluts", pixluts)
        self.moving_dict_container.set(
            "list_roi_numbers",
            ordered_list_rois(self.moving_dict_container.get("rois")))
        self.moving_dict_container.set("selected_rois", [])
        self.moving_dict_container.set("dict_polygons_axial", {})
        self.moving_dict_container.set("dict_polygons_sagittal", {})
        self.moving_dict_container.set("dict_polygons_coronal", {})

        if "draw" in change_description or "transfer" in change_description:
            dicom_tree_rtss = DicomTree(None)
            dicom_tree_rtss.dataset = new_dataset
            dicom_tree_rtss.dict = dicom_tree_rtss.dataset_to_dict(
                dicom_tree_rtss.dataset)
            self.moving_dict_container.set("dict_dicom_tree_rtss",
                                           dicom_tree_rtss.dict)
            self.color_dict = self.init_color_roi(self.moving_dict_container)
            self.moving_dict_container.set("roi_color_dict", self.color_dict)
            if self.moving_dict_container.has_attribute("raw_dvh"):
                # DVH will be outdated once changes to it are made, and
                # recalculation will be required.
                self.moving_dict_container.set("dvh_outdated", True)

        if self.moving_dict_container.has_modality("raw_dvh"):
            # Rename structures in DVH list
            if "rename" in change_description:
                new_raw_dvh = self.moving_dict_container.get("raw_dvh")
                for key, dvh in new_raw_dvh.items():
                    if dvh.name == change_description["rename"][0]:
                        dvh.name = change_description["rename"][1]
                        break

                self.moving_dict_container.set("raw_dvh", new_raw_dvh)

            # Remove structures from DVH list - the only visible effect of
            # this section is the exported DVH csv
            if "delete" in change_description:
                list_of_deleted = []
                new_raw_dvh = self.moving_dict_container.get("raw_dvh")
                for key, dvh in new_raw_dvh.items():
                    if dvh.name in change_description["delete"]:
                        list_of_deleted.append(key)
                for key in list_of_deleted:
                    new_raw_dvh.pop(key)
                self.moving_dict_container.set("raw_dvh", new_raw_dvh)

        if "transfer" in change_description \
                and change_description["transfer"] is None:
            self.save_new_rtss_to_moving_image_set()

    def fixed_container_structure_modified(self, changes):
        """
        Executes when a structure of fixed patient container is modified
        Displays indicator that structure has changed.
        Changes is a tuple of (new_dataset,
        description_of_changes)
        description_of_changes follows the format
        {"type_of_change": value_of_change}.
        Examples:
        {"rename": ["TOOTH", "TEETH"]} represents that the TOOTH structure has
            been renamed to TEETH.
        {"delete": ["TEETH", "MAXILLA"]} represents that the TEETH and MAXILLA
            structures have been deleted.
        {"draw": "AORTA"} represents that a new structure AORTA has been drawn.
        Note: Use {"draw": None} after multiple ROIs are generated
        (E.g., from ISO2ROI functionality), and use {"transfer":None} for
         ROI Transfer instead of calling this function
        multiple times. This will trigger auto save.
        """

        new_dataset = changes[0]
        change_description = changes[1]

        # Only show the modified indicator if description_of_changes is
        # not {"draw": None}, as this description means that the RTSS
        # is autosaved, and therefore there is no need to tell the user
        # that the RTSS has been modified
        if not("draw" in change_description
               and change_description["draw"] is None) and \
                not ("transfer" in change_description):
            self.show_modified_indicator()

        # If this is the first change made to the RTSS file, update the
        # dataset with the new one so that OnkoDICOM starts working off this
        # dataset rather than the original RTSS file.
        self.patient_dict_container.set("rtss_modified", True)
        self.patient_dict_container.set("dataset_rtss", new_dataset)

        # Refresh ROIs in main page
        self.patient_dict_container.set("rois",
                                        ImageLoading.get_roi_info(new_dataset))
        self.rois = self.patient_dict_container.get("rois")
        contour_data = ImageLoading.get_raw_contour_data(new_dataset)
        self.patient_dict_container.set("raw_contour", contour_data[0])
        self.patient_dict_container.set("num_points", contour_data[1])
        pixluts = ImageLoading.get_pixluts(self.patient_dict_container.dataset)
        self.patient_dict_container.set("pixluts", pixluts)
        self.patient_dict_container.set(
            "list_roi_numbers",
            ordered_list_rois(self.patient_dict_container.get("rois")))
        self.patient_dict_container.set("selected_rois", [])
        self.patient_dict_container.set("dict_polygons_axial", {})
        self.patient_dict_container.set("dict_polygons_sagittal", {})
        self.patient_dict_container.set("dict_polygons_coronal", {})

        if "draw" in change_description or "transfer" in change_description:
            dicom_tree_rtss = DicomTree(None)
            dicom_tree_rtss.dataset = new_dataset
            dicom_tree_rtss.dict = dicom_tree_rtss.dataset_to_dict(
                dicom_tree_rtss.dataset)
            self.patient_dict_container.set("dict_dicom_tree_rtss",
                                            dicom_tree_rtss.dict)
            self.color_dict = self.init_color_roi(self.patient_dict_container)
            self.patient_dict_container.set("roi_color_dict", self.color_dict)
            if self.patient_dict_container.has_attribute("raw_dvh"):
                # DVH will be outdated once changes to it are made, and
                # recalculation will be required.
                self.patient_dict_container.set("dvh_outdated", True)

        if self.patient_dict_container.has_attribute("raw_dvh"):
            # Rename structures in DVH list
            if "rename" in change_description:
                new_raw_dvh = self.patient_dict_container.get("raw_dvh")
                for key, dvh in new_raw_dvh.items():
                    if dvh.name == change_description["rename"][0]:
                        dvh.name = change_description["rename"][1]
                        break

                self.patient_dict_container.set("raw_dvh", new_raw_dvh)
                dvh2rtdose(new_raw_dvh)

            # Remove structures from DVH list - the only visible effect of
            # this section is the exported DVH csv
            if "delete" in change_description:
                list_of_deleted = []
                new_raw_dvh = self.patient_dict_container.get("raw_dvh")
                for key, dvh in new_raw_dvh.items():
                    if dvh.name in change_description["delete"]:
                        list_of_deleted.append(key)
                for key in list_of_deleted:
                    new_raw_dvh.pop(key)
                self.patient_dict_container.set("raw_dvh", new_raw_dvh)
                dvh2rtdose(new_raw_dvh)

        # Refresh ROIs in DVH tab and DICOM View
        self.request_update_structures.emit()

        # Refresh structure tab
        self.update_content()

        if "draw" in change_description and change_description["draw"] is None:
            self.save_new_rtss_to_fixed_image_set(auto=True)
        elif "transfer" in change_description \
                and change_description["transfer"] is None:
            self.save_new_rtss_to_fixed_image_set(auto=True)

    def show_modified_indicator(self):
        self.modified_indicator_widget.setVisible(True)

    def structure_checked(self, state, roi_id):
        """
        Function triggered when the checkbox of a structure is
        checked / unchecked.
        Update the list of selected structures.
        Update the plot of the DVH and the DICOM view.

        :param state: True if the checkbox is checked, False otherwise.
        :param roi_id: ROI number
        """

        selected_rois = self.patient_dict_container.get("selected_rois")
        if state:
            selected_rois.append(roi_id)
        else:
            selected_rois.remove(roi_id)

        self.patient_dict_container.set("selected_rois", selected_rois)
        self.update_dict_polygons(state, roi_id)

        self.request_update_structures.emit()

    def update_dict_polygons(self, state, roi_id):
        """
        Update the polygon dictionaries (axial, coronal, sagittal) used to
        display the ROIs.
        :param state: True if the ROI is selected, False otherwise
        :param roi_id: ROI number
        """
        rois = self.patient_dict_container.get("rois")
        new_dict_polygons_axial = self.patient_dict_container.get(
            "dict_polygons_axial")
        new_dict_polygons_coronal = self.patient_dict_container.get(
            "dict_polygons_coronal")
        new_dict_polygons_sagittal = self.patient_dict_container.get(
            "dict_polygons_sagittal")
        aspect = self.patient_dict_container.get("pixmap_aspect")
        roi_name = rois[roi_id]['name']

        if state:
            new_dict_polygons_axial[roi_name] = {}
            new_dict_polygons_coronal[roi_name] = {}
            new_dict_polygons_sagittal[roi_name] = {}
            dict_rois_contours_axial = get_roi_contour_pixel(
                self.patient_dict_container.get("raw_contour"), [roi_name],
                self.patient_dict_container.get("pixluts"))
            dict_rois_contours_coronal, dict_rois_contours_sagittal = \
                transform_rois_contours(
                    dict_rois_contours_axial)

            for slice_id in self.patient_dict_container.get(
                    "dict_uid").values():
                polygons = calc_roi_polygon(roi_name, slice_id,
                                            dict_rois_contours_axial)
                new_dict_polygons_axial[roi_name][slice_id] = polygons

            for slice_id in range(
                    0,
                    len(self.patient_dict_container.get("pixmaps_coronal"))):
                polygons_coronal = calc_roi_polygon(
                    roi_name, slice_id, dict_rois_contours_coronal,
                    aspect["coronal"])
                polygons_sagittal = calc_roi_polygon(
                    roi_name, slice_id, dict_rois_contours_sagittal,
                    1 / aspect["sagittal"])
                new_dict_polygons_coronal[roi_name][
                    slice_id] = polygons_coronal
                new_dict_polygons_sagittal[roi_name][
                    slice_id] = polygons_sagittal

            self.patient_dict_container.set("dict_polygons_axial",
                                            new_dict_polygons_axial)
            self.patient_dict_container.set("dict_polygons_coronal",
                                            new_dict_polygons_coronal)
            self.patient_dict_container.set("dict_polygons_sagittal",
                                            new_dict_polygons_sagittal)
        else:
            new_dict_polygons_axial.pop(roi_name, None)
            new_dict_polygons_coronal.pop(roi_name, None)
            new_dict_polygons_sagittal.pop(roi_name, None)

    def on_rtss_selected(self, selected_rtss):
        """
        Function to run after a rtss is selected from SelectRTSSPopUp
        """
        self.patient_dict_container.get("existing_rtss_files").clear()
        self.patient_dict_container.get("existing_rtss_files").append(
            selected_rtss)
        self.save_new_rtss(auto=True)

    def display_select_rtss_window(self):
        """
        Display a pop up window that contains all RTSSs attached to the
        selected image set.
        """
        self.select_rtss_window = SelectRTSSPopUp(
            self.patient_dict_container.get("existing_rtss_files"),
            parent=self)
        self.select_rtss_window.signal_rtss_selected.connect(
            self.on_rtss_selected)
        self.select_rtss_window.show()

    def save_new_rtss_to_fixed_image_set(self, event=None, auto=False):
        """
        Save the current RTSS stored in fixed patient dictionary to the file
        system. :param event: Not used but will be passed as an argument
        from modified_indicator_widget on mouseReleaseEvent :param auto:
        Used for auto save without user confirmation
        """
        existing_rtss_files = self.patient_dict_container.get(
            "existing_rtss_files")
        if len(existing_rtss_files) == 1:
            if isinstance(existing_rtss_files[0], Series):
                existing_rtss_directory = str(
                    Path(existing_rtss_files[0].get_files()[0]))
            else:
                # This "else" is used by iso2roi gui and structure tab tests to
                # quickly set existing_rtss_directory
                existing_rtss_directory = existing_rtss_files[0]
        elif len(existing_rtss_files) > 1:
            self.display_select_rtss_window()
            # This function will be called again when a RTSS is selected
            return
        else:
            existing_rtss_directory = None

        rtss_directory = str(Path(
            self.patient_dict_container.get("file_rtss")))

        if auto:
            confirm_save = QtWidgets.QMessageBox.Yes
        else:
            confirm_save = \
                QtWidgets.QMessageBox.information(self, "Confirmation",
                                                  "Are you sure you want to "
                                                  "save the modified RTSTRUCT "
                                                  "file? This will overwrite "
                                                  "the existing file. This is "
                                                  "not reversible.",
                                                  QtWidgets.QMessageBox.Yes,
                                                  QtWidgets.QMessageBox.No)

        if confirm_save == QtWidgets.QMessageBox.Yes:
            if existing_rtss_directory is None:
                self.patient_dict_container.get("dataset_rtss").save_as(
                    rtss_directory)
            else:
                new_rtss = self.patient_dict_container.get("dataset_rtss")
                old_rtss = pydicom.dcmread(existing_rtss_directory, force=True)
                old_roi_names = \
                    set(value["name"] for value in
                        ImageLoading.get_roi_info(old_rtss).values())
                new_roi_names = \
                    set(value["name"] for value in
                        self.patient_dict_container.get("rois").values())
                duplicated_names = old_roi_names.intersection(new_roi_names)

                # stop if there are conflicting roi names and user do not
                # wish to proceed.
                if duplicated_names and not self.display_confirm_merge(
                        duplicated_names):
                    return

                merged_rtss = merge_rtss(old_rtss, new_rtss, duplicated_names)
                merged_rtss.save_as(existing_rtss_directory)

            if not auto:
                QtWidgets.QMessageBox.about(
                    self.parentWidget(), "File saved",
                    "The RTSTRUCT file has been saved.")
            self.patient_dict_container.set("rtss_modified", False)
            # Hide the modified indicator
            self.modified_indicator_widget.setVisible(False)

    def save_new_rtss_to_moving_image_set(self, event=None):
        """
        Save the current RTSS stored in moving patient dictionary to the
        file system. ROIs modification into moving patient dict is auto
        saved :param event: Not used but will be passed as an argument from
        modified_indicator_widget on mouseReleaseEvent
        """
        if self.moving_dict_container.get("existing_file_rtss") is not None:
            existing_rtss_directory = str(
                Path(self.moving_dict_container.get("existing_file_rtss")))
        else:
            existing_rtss_directory = None
        rtss_directory = str(Path(self.moving_dict_container.get("file_rtss")))

        if existing_rtss_directory is None:
            self.moving_dict_container.get("dataset_rtss").save_as(
                rtss_directory)
        else:
            new_rtss = self.moving_dict_container.get("dataset_rtss")
            old_rtss = pydicom.dcmread(existing_rtss_directory, force=True)
            old_roi_names = \
                set(value["name"] for value in
                    ImageLoading.get_roi_info(old_rtss).values())
            new_roi_names = \
                set(value["name"] for value in
                    self.moving_dict_container.get("rois").values())
            duplicated_names = old_roi_names.intersection(new_roi_names)
            merged_rtss = merge_rtss(old_rtss, new_rtss, duplicated_names)
            merged_rtss.save_as(existing_rtss_directory)
        self.moving_dict_container.set("rtss_modified", False)

    def display_confirm_merge(self, duplicated_names):
        confirm_merge = QtWidgets.QMessageBox(parent=self)
        confirm_merge.setIcon(QtWidgets.QMessageBox.Question)
        confirm_merge.setWindowTitle("Merge RTSTRUCTs?")
        confirm_merge.setText("Conflicting ROI names found between new ROIs "
                              "and existing ROIs:\n" + str(duplicated_names) +
                              "\nAre you sure you want to merge the RTSTRUCT "
                              "files? The new ROIs will replace the existing "
                              "ROIs. ")
        button_yes = QtWidgets.QPushButton("Yes, I want to merge")
        button_no = QtWidgets.QPushButton("No, I will change the names")
        """ 
        We want the buttons 'No' & 'Yes' to be displayed in that exact 
        order. QMessageBox displays buttons in respect to their assigned 
        roles. (0 first, then 0 and so on) 'AcceptRole' is 0 and 
        'RejectRole' is 1 thus by counterintuitively assigning 'No' to 
        'AcceptRole' and 'Yes' to 'RejectRole' the buttons are 
        positioned as desired.
        """
        confirm_merge.addButton(button_no, QtWidgets.QMessageBox.AcceptRole)
        confirm_merge.addButton(button_yes, QtWidgets.QMessageBox.RejectRole)
        confirm_merge.exec_()

        if confirm_merge.clickedButton() == button_yes:
            return True
        return False
Пример #16
0
def create_initial_model():
    """
    This function initializes all the attributes in the PatientDictContainer model required for the operation of the
    main window. This should be called before the main window's components are constructed, but after the initial
    values of the PatientDictContainer instance are set (i.e. dataset and filepaths).
    """
    ##############################
    #  LOAD PATIENT INFORMATION  #
    ##############################
    patient_dict_container = PatientDictContainer()

    dataset = patient_dict_container.dataset
    filepaths = patient_dict_container.filepaths
    patient_dict_container.set("rtss_modified", False)

    if ('WindowWidth' in dataset[0]):
        if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat):
            window = int(dataset[0].WindowWidth)
        elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue):
            window = int(dataset[0].WindowWidth[1])
    else:
        window = int(400)

    if ('WindowCenter' in dataset[0]):
        if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat):
            level = int(dataset[0].WindowCenter)
        elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue):
            level = int(dataset[0].WindowCenter[1])
    else:
        level = int(800)

    patient_dict_container.set("window", window)
    patient_dict_container.set("level", level)

    # Check to see if the imageWindowing.csv file exists
    if os.path.exists(resource_path('data/csv/imageWindowing.csv')):
        # If it exists, read data from file into the self.dict_windowing variable
        dict_windowing = {}
        with open(resource_path('data/csv/imageWindowing.csv'),
                  "r") as fileInput:
            next(fileInput)
            dict_windowing["Normal"] = [window, level]
            for row in fileInput:
                # Format: Organ - Scan - Window - Level
                items = [item for item in row.split(',')]
                dict_windowing[items[0]] = [int(items[2]), int(items[3])]
    else:
        # If csv does not exist, initialize dictionary with default values
        dict_windowing = {
            "Normal": [window, level],
            "Lung": [1600, -300],
            "Bone": [1400, 700],
            "Brain": [160, 950],
            "Soft Tissue": [400, 800],
            "Head and Neck": [275, 900]
        }

    patient_dict_container.set("dict_windowing", dict_windowing)

    pixel_values = convert_raw_data(dataset)
    pixmaps = get_pixmaps(pixel_values, window, level)
    patient_dict_container.set("pixmaps", pixmaps)
    patient_dict_container.set("pixel_values", pixel_values)

    basic_info = get_basic_info(dataset[0])
    patient_dict_container.set("basic_info", basic_info)

    patient_dict_container.set("dict_uid", dict_instanceUID(dataset))

    # Set RTSS attributes
    if patient_dict_container.has_modality("rtss"):
        patient_dict_container.set("file_rtss", filepaths['rtss'])
        patient_dict_container.set("dataset_rtss", dataset['rtss'])

        dicom_tree_rtss = DicomTree(filepaths['rtss'])
        patient_dict_container.set("dict_dicom_tree_rtss",
                                   dicom_tree_rtss.dict)

        patient_dict_container.set(
            "list_roi_numbers",
            ordered_list_rois(patient_dict_container.get("rois")))
        patient_dict_container.set("selected_rois", [])

        patient_dict_container.set("dict_polygons", {})

    # Set RTDOSE attributes
    if patient_dict_container.has_modality("rtdose"):
        dicom_tree_rtdose = DicomTree(filepaths['rtdose'])
        patient_dict_container.set("dict_dicom_tree_rtdose",
                                   dicom_tree_rtdose.dict)

        patient_dict_container.set("dose_pixluts", get_dose_pixluts(dataset))

        patient_dict_container.set("selected_doses", [])
        patient_dict_container.set(
            "rx_dose_in_cgray",
            1)  # This will be overwritten if an RTPLAN is present.

    # Set RTPLAN attributes
    if patient_dict_container.has_modality("rtplan"):
        # the TargetPrescriptionDose is type 3 (optional), so it may not be there
        # However, it is preferable to the sum of the beam doses
        # DoseReferenceStructureType is type 1 (value is mandatory),
        # but it can have a value of ORGAN_AT_RISK rather than TARGET
        # in which case there will *not* be a TargetPrescriptionDose
        # and even if it is TARGET, that's no guarantee that TargetPrescriptionDose
        # will be encoded and have a value
        rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"])
        patient_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray)

        dicom_tree_rtplan = DicomTree(filepaths['rtplan'])
        patient_dict_container.set("dict_dicom_tree_rtplan",
                                   dicom_tree_rtplan.dict)
Пример #17
0
class IsodoseTab(QtWidgets.QWidget):

    request_update_isodoses = QtCore.Signal()
    request_update_ui = QtCore.Signal(tuple)

    def __init__(self):
        QtWidgets.QWidget.__init__(self)
        self.patient_dict_container = PatientDictContainer()
        self.rx_dose_in_cgray = self.patient_dict_container.get(
            "rx_dose_in_cgray")
        self.color_dict = self.init_color_isod()
        self.color_squares = self.init_color_squares()
        self.checkboxes = self.init_checkboxes()

        # Create and initialise ISO2ROI button and layout
        self.iso2roi_button = QtWidgets.QPushButton()
        self.iso2roi_button.setText("Convert Isodoses to ROIs")
        self.iso2roi_button.clicked.connect(self.iso2roi_button_clicked)

        self.iso2roi_layout = QtWidgets.QHBoxLayout()
        self.iso2roi_layout.setContentsMargins(0, 0, 0, 0)
        self.iso2roi_layout.addWidget(self.iso2roi_button)

        self.isodose_tab_layout = QtWidgets.QVBoxLayout()
        self.isodose_tab_layout.setAlignment(QtCore.Qt.AlignTop
                                             | QtCore.Qt.AlignTop)
        self.isodose_tab_layout.setSpacing(0)
        self.init_layout()
        self.iso2roi = ISO2ROI()

        # Add button to tab
        self.isodose_tab_layout.addStretch()
        self.isodose_tab_layout.addLayout(self.iso2roi_layout)

        self.setLayout(self.isodose_tab_layout)
        self.progress_window = ProgressWindow(
            self, QtCore.Qt.WindowTitleHint | QtCore.Qt.WindowCloseButtonHint)
        self.progress_window.signal_loaded.connect(self.on_loaded_iso2roi)

    def init_layout(self):
        for i in range(0, len(self.checkboxes)):
            widget_isodose = QtWidgets.QWidget()
            layout_isodose = QtWidgets.QHBoxLayout(widget_isodose)
            layout_isodose.setAlignment(QtCore.Qt.AlignLeft
                                        | QtCore.Qt.AlignLeft)
            layout_isodose.addWidget(self.color_squares[i])
            layout_isodose.addWidget(self.checkboxes[i])
            self.isodose_tab_layout.addWidget(widget_isodose)

    def init_color_isod(self):
        """
        Create a list containing the colors for each isodose.

        :return: Dictionary where the key is the percentage of isodose and the value a QColor object.
        """
        roi_color = {
            107: QtGui.QColor(131, 0, 0),
            105: QtGui.QColor(185, 0, 0),
            100: QtGui.QColor(255, 46, 0),
            95: QtGui.QColor(255, 161, 0),
            90: QtGui.QColor(253, 255, 0),
            80: QtGui.QColor(0, 255, 0),
            70: QtGui.QColor(0, 143, 0),
            60: QtGui.QColor(0, 255, 255),
            30: QtGui.QColor(33, 0, 255),
            10: QtGui.QColor(11, 0, 134)
        }

        return roi_color

    def init_color_squares(self):
        """
        Create a color square.
        """
        list_of_squares = []
        for key, color in self.color_dict.items():
            list_of_squares.append(self.draw_color_square(color))

        return list_of_squares

    def init_checkboxes(self):
        """
        Initialize the checkbox objects.
        """
        list_of_checkboxes = []
        # Values of Isodoses
        list_of_doses = []
        for percentage in isodose_percentages:
            dose = int(self.rx_dose_in_cgray * (percentage / 100))
            list_of_doses.append(dose)

        # Checkboxes
        def generate_clicked_handler(text):
            def handler(state):
                self.checked_dose(state, text)

            return handler

        first_iteration = True
        for i in range(10):
            if first_iteration:
                checkbox = QtWidgets.QCheckBox(
                    "%s %% / %s cGy [Max]" %
                    (str(isodose_percentages[i]), str(list_of_doses[i])))
                first_iteration = False
            else:
                checkbox = QtWidgets.QCheckBox(
                    "%s %% / %s cGy" %
                    (str(isodose_percentages[i]), str(list_of_doses[i])))
            checkbox.clicked.connect(
                generate_clicked_handler(isodose_percentages[i]))
            checkbox.setStyleSheet("font: 10pt \"Laksaman\";")
            list_of_checkboxes.append(checkbox)

        return list_of_checkboxes

    # Function triggered when a dose level selected
    # Updates the list of selected isodoses and dicom view
    def checked_dose(self, state, isod_value):
        """
        Function triggered when the checkbox of a structure is checked / unchecked.
        Update the list of selected structures.
        Update the DICOM view.

        :param state: True if the checkbox is checked, False otherwise.
        :param isod_value: Percentage of isodose.
        """

        selected_doses = self.patient_dict_container.get("selected_doses")

        if state:
            # Add the dose to the list of selected doses
            selected_doses.append(isod_value)
        else:
            # Remove dose from list of previously selected doses
            selected_doses.remove(isod_value)

        self.patient_dict_container.set("selected_doses", selected_doses)

        # Update the dicom view
        self.request_update_isodoses.emit()

    def draw_color_square(self, color):
        """
        Create a color square.
        :param color: QColor object
        :return: Color square widget.
        """
        color_square_label = QtWidgets.QLabel()
        color_square_pix = QtGui.QPixmap(15, 15)
        color_square_pix.fill(color)
        color_square_label.setPixmap(color_square_pix)

        return color_square_label

    def iso2roi_button_clicked(self):
        """
        Clicked action handler for the ISO2ROI button.
        Opens a progress window and Initiates the
        ISO2ROI conversion process.
        """
        self.progress_window.start(self.iso2roi.start_conversion)

    def on_loaded_iso2roi(self):
        """
        Called when progress bar has finished.
        Closes the progress window and refreshes
        the main screen.
        """
        self.request_update_ui.emit(
            (self.patient_dict_container.get('dataset_rtss'), {
                "draw": None
            }))
        self.progress_window.close()
Пример #18
0
class DicomView(QtWidgets.QWidget):
    def __init__(self, roi_color=None, iso_color=None):
        QtWidgets.QWidget.__init__(self)
        self.patient_dict_container = PatientDictContainer()
        self.iso_color = iso_color
        self.zoom = 1
        self.current_slice_number = None

        self.dicom_view_layout = QtWidgets.QHBoxLayout()

        # Create components
        self.slider = QtWidgets.QSlider(QtCore.Qt.Vertical)
        self.init_slider()
        self.view = QtWidgets.QGraphicsView()
        self.init_view()
        self.scene = QtWidgets.QGraphicsScene()

        # Set layout
        self.dicom_view_layout.addWidget(self.view)
        self.dicom_view_layout.addWidget(self.slider)
        self.setLayout(self.dicom_view_layout)

        # Init metadata widgets
        self.metadata_layout = QtWidgets.QVBoxLayout(self.view)
        self.label_image_id = QtWidgets.QLabel()
        self.label_image_pos = QtWidgets.QLabel()
        self.label_wl = QtWidgets.QLabel()
        self.label_image_size = QtWidgets.QLabel()
        self.label_zoom = QtWidgets.QLabel()
        self.label_patient_pos = QtWidgets.QLabel()
        self.init_metadata()

        self.update_view()

    def init_slider(self):
        """
        Create a slider for the DICOM Image View.
        """
        pixmaps = self.patient_dict_container.get("pixmaps")
        self.slider.setMinimum(0)
        self.slider.setMaximum(len(pixmaps) - 1)
        self.slider.setValue(int(len(pixmaps) / 2))
        self.slider.setTickPosition(QtWidgets.QSlider.TicksLeft)
        self.slider.setTickInterval(1)
        self.slider.valueChanged.connect(self.value_changed)

    def init_view(self):
        """
        Create a view widget for DICOM image.
        """
        self.view.setRenderHints(QtGui.QPainter.Antialiasing
                                 | QtGui.QPainter.SmoothPixmapTransform)
        background_brush = QtGui.QBrush(QtGui.QColor(0, 0, 0),
                                        QtCore.Qt.SolidPattern)
        self.view.setBackgroundBrush(background_brush)
        self.view.setGeometry(QtCore.QRect(0, 0, 877, 517))

    def init_metadata(self):
        """
        Create and place metadata on the view widget.
        """
        # Position of the labels on the DICOM view.
        self.label_image_id.setAlignment(QtCore.Qt.AlignTop)
        self.label_image_pos.setAlignment(QtCore.Qt.AlignTop)
        self.label_wl.setAlignment(QtCore.Qt.AlignRight)
        self.label_image_size.setAlignment(QtCore.Qt.AlignBottom)
        self.label_zoom.setAlignment(QtCore.Qt.AlignBottom)
        self.label_patient_pos.setAlignment(QtCore.Qt.AlignRight)

        # Set all labels to white
        stylesheet = "QLabel { color : white; }"
        self.label_image_id.setStyleSheet(stylesheet)
        self.label_image_pos.setStyleSheet(stylesheet)
        self.label_wl.setStyleSheet(stylesheet)
        self.label_image_size.setStyleSheet(stylesheet)
        self.label_zoom.setStyleSheet(stylesheet)
        self.label_patient_pos.setStyleSheet(stylesheet)

        # The following layout was originally accomplished using a QGridLayout with QSpaceItems to anchor the labels
        # to the corners of the DICOM view. This caused a reintroduction of the tedious memory issues that were fixed
        # with the restructure. The following was rewritten to not use QSpaceItems because they, for reasons unknown,
        # caused a memory leak resulting in the entire patient dictionary not being cleared from memory correctly,
        # leaving hundreds of additional megabytes unused in memory each time a new patient was opened.

        # Create a widget to contain the two top-left labels
        top_left_widget = QtWidgets.QWidget()
        top_left = QtWidgets.QVBoxLayout(top_left_widget)
        top_left.addWidget(self.label_image_id, QtCore.Qt.AlignTop)
        top_left.addWidget(self.label_image_pos, QtCore.Qt.AlignTop)

        # Create a widget to contain the top-right label
        top_right_widget = QtWidgets.QWidget()
        top_right = QtWidgets.QVBoxLayout(top_right_widget)
        top_right.addWidget(self.label_wl, QtCore.Qt.AlignTop)

        # Create a widget to contain the two top widgets
        top_widget = QtWidgets.QWidget()
        top_widget.setFixedHeight(100)
        top = QtWidgets.QHBoxLayout(top_widget)
        top.addWidget(top_left_widget, QtCore.Qt.AlignLeft)
        top.addWidget(top_right_widget, QtCore.Qt.AlignRight)

        # Create a widget to contain the two bottom-left labels
        bottom_left_widget = QtWidgets.QWidget()
        bottom_left = QtWidgets.QVBoxLayout(bottom_left_widget)
        bottom_left.addWidget(self.label_image_size, QtCore.Qt.AlignBottom)
        bottom_left.addWidget(self.label_zoom, QtCore.Qt.AlignBottom)

        # Create a widget to contain the bottom-right label
        bottom_right_widget = QtWidgets.QWidget()
        bottom_right = QtWidgets.QVBoxLayout(bottom_right_widget)
        bottom_right.addWidget(self.label_patient_pos, QtCore.Qt.AlignBottom)

        # Create a widget to contain the two bottom widgets
        bottom_widget = QtWidgets.QWidget()
        bottom_widget.setFixedHeight(100)
        bottom = QtWidgets.QHBoxLayout(bottom_widget)
        bottom.addWidget(bottom_left_widget, QtCore.Qt.AlignLeft)
        bottom.addWidget(bottom_right_widget, QtCore.Qt.AlignRight)

        # Add the bottom and top widgets to the view
        self.metadata_layout.addWidget(top_widget, QtCore.Qt.AlignTop)
        self.metadata_layout.addStretch()
        self.metadata_layout.addWidget(bottom_widget, QtCore.Qt.AlignBottom)

    def value_changed(self):
        self.update_view()

    def update_view(self, zoom_change=False):
        """
        Update the view of the DICOM Image.
        :param zoom_change: Boolean indicating whether the user wants to change the zoom. False by default.
        """
        self.image_display()

        if zoom_change:
            self.view.setTransform(QtGui.QTransform().scale(
                self.zoom, self.zoom))

        if self.patient_dict_container.get("selected_rois"):
            self.roi_display()

        if self.patient_dict_container.get("selected_doses"):
            self.isodose_display()

        self.update_metadata()
        self.view.setScene(self.scene)

    def image_display(self):
        """
        Update the image to be displayed on the DICOM View.
        """
        pixmaps = self.patient_dict_container.get("pixmaps")
        slider_id = self.slider.value()
        image = pixmaps[slider_id]
        label = QtWidgets.QGraphicsPixmapItem(image)
        self.scene = QtWidgets.QGraphicsScene()
        self.scene.addItem(label)

    def roi_display(self):
        """
        Display ROI structures on the DICOM Image.
        """
        slider_id = self.slider.value()
        curr_slice = self.patient_dict_container.get("dict_uid")[slider_id]

        selected_rois = self.patient_dict_container.get("selected_rois")
        rois = self.patient_dict_container.get("rois")
        selected_rois_name = []
        for roi in selected_rois:
            selected_rois_name.append(rois[roi]['name'])

        for roi in selected_rois:
            roi_name = rois[roi]['name']

            if roi_name not in self.patient_dict_container.get(
                    "dict_polygons").keys():
                new_dict_polygons = self.patient_dict_container.get(
                    "dict_polygons")
                new_dict_polygons[roi_name] = {}
                dict_rois_contours = get_contour_pixel(
                    self.patient_dict_container.get("raw_contour"),
                    selected_rois_name,
                    self.patient_dict_container.get("pixluts"), curr_slice)
                polygons = self.calc_roi_polygon(roi_name, curr_slice,
                                                 dict_rois_contours)
                new_dict_polygons[roi_name][curr_slice] = polygons
                self.patient_dict_container.set("dict_polygons",
                                                new_dict_polygons)

            elif curr_slice not in self.patient_dict_container.get(
                    "dict_polygons")[roi_name].keys():
                new_dict_polygons = self.patient_dict_container.get(
                    "dict_polygons")
                dict_rois_contours = get_contour_pixel(
                    self.patient_dict_container.get("raw_contour"),
                    selected_rois_name,
                    self.patient_dict_container.get("pixluts"), curr_slice)
                polygons = self.calc_roi_polygon(roi_name, curr_slice,
                                                 dict_rois_contours)
                new_dict_polygons[roi_name][curr_slice] = polygons
                self.patient_dict_container.set("dict_polygons",
                                                new_dict_polygons)

            else:
                polygons = self.patient_dict_container.get(
                    "dict_polygons")[roi_name][curr_slice]

            color = self.patient_dict_container.get("roi_color_dict")[roi]
            with open(resource_path('src/data/line&fill_configuration'),
                      'r') as stream:
                elements = stream.readlines()
                if len(elements) > 0:
                    roi_line = int(elements[0].replace('\n', ''))
                    roi_opacity = int(elements[1].replace('\n', ''))
                    line_width = float(elements[4].replace('\n', ''))
                else:
                    roi_line = 1
                    roi_opacity = 10
                    line_width = 2.0
                stream.close()
            roi_opacity = int((roi_opacity / 100) * 255)
            color.setAlpha(roi_opacity)
            pen = self.get_qpen(color, roi_line, line_width)
            for i in range(len(polygons)):
                self.scene.addPolygon(polygons[i], pen, QtGui.QBrush(color))

    def isodose_display(self):
        """
        Display isodoses on the DICOM Image.
        """
        slider_id = self.slider.value()
        curr_slice_uid = self.patient_dict_container.get("dict_uid")[slider_id]
        z = self.patient_dict_container.dataset[
            slider_id].ImagePositionPatient[2]
        dataset_rtdose = self.patient_dict_container.dataset['rtdose']
        grid = get_dose_grid(dataset_rtdose, float(z))

        if not (grid == []):
            x, y = np.meshgrid(np.arange(grid.shape[1]),
                               np.arange(grid.shape[0]))

            # Instantiate the isodose generator for this slice
            isodosegen = cntr.Cntr(x, y, grid)

            # sort selected_doses in ascending order so that the high dose isodose washes
            # paint over the lower dose isodose washes
            for sd in sorted(
                    self.patient_dict_container.get("selected_doses")):
                dose_level = sd * self.patient_dict_container.get("rx_dose_in_cgray") / \
                             (dataset_rtdose.DoseGridScaling * 10000)
                contours = isodosegen.trace(dose_level)
                contours = contours[:len(contours) // 2]

                polygons = self.calc_dose_polygon(
                    self.patient_dict_container.get("dose_pixluts")
                    [curr_slice_uid], contours)

                brush_color = self.iso_color[sd]
                with open(resource_path('src/data/line&fill_configuration'),
                          'r') as stream:
                    elements = stream.readlines()
                    if len(elements) > 0:
                        iso_line = int(elements[2].replace('\n', ''))
                        iso_opacity = int(elements[3].replace('\n', ''))
                        line_width = float(elements[4].replace('\n', ''))
                    else:
                        iso_line = 2
                        iso_opacity = 5
                        line_width = 2.0
                    stream.close()
                iso_opacity = int((iso_opacity / 100) * 255)
                brush_color.setAlpha(iso_opacity)
                pen_color = QtGui.QColor(brush_color.red(),
                                         brush_color.green(),
                                         brush_color.blue())
                pen = self.get_qpen(pen_color, iso_line, line_width)
                for i in range(len(polygons)):
                    self.scene.addPolygon(polygons[i], pen,
                                          QtGui.QBrush(brush_color))

    def update_metadata(self):
        """
        Update metadata displayed on the DICOM Image view.
        """
        # Retrieve dictionary from the dataset of the slice
        id = self.slider.value()
        dataset = self.patient_dict_container.dataset[id]

        # Information to display
        self.current_slice_number = dataset['InstanceNumber'].value
        total_slices = len(self.patient_dict_container.get("pixmaps"))
        row_img = dataset['Rows'].value
        col_img = dataset['Columns'].value
        patient_pos = dataset['PatientPosition'].value
        window = self.patient_dict_container.get("window")
        level = self.patient_dict_container.get("level")
        slice_pos = dataset['SliceLocation'].value

        # Update labels
        self.label_image_id.setText(
            "Image: %s / %s" %
            (str(self.current_slice_number), str(total_slices)))
        self.label_image_pos.setText("Position: %s mm" % (str(slice_pos)))
        self.label_wl.setText("W/L: %s/%s" % (str(window), str(level)))
        self.label_image_size.setText("Image Size: %sx%spx" %
                                      (str(row_img), str(col_img)))
        self.label_zoom.setText("Zoom: " + "{:.2f}".format(self.zoom * 100) +
                                "%")
        self.label_patient_pos.setText("Patient Position: %s" %
                                       (str(patient_pos)))

    def calc_roi_polygon(self, curr_roi, curr_slice, dict_rois_contours):
        """
        Calculate a list of polygons to display for a given ROI and a given slice.
        :param curr_roi:
         the ROI structure
        :param curr_slice:
         the current slice
        :return: List of polygons of type QPolygonF.
        """
        # TODO Implement support for showing "holes" in contours.
        # Possible process for this is:
        # 1. Calculate the areas of each contour on the slice
        # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
        # 2. Compare each contour to the largest contour by area to determine if it is contained entirely within the
        # largest contour.
        # https://stackoverflow.com/questions/4833802/check-if-polygon-is-inside-a-polygon
        # 3. If the polygon is contained, use QPolygonF.subtracted(QPolygonF) to subtract the smaller "hole" polygon
        # from the largest polygon, and then remove the polygon from the list of polygons to be displayed.
        # This process should provide fast and reliable results, however it should be noted that this method may fall
        # apart in a situation where there are multiple "large" polygons, each with their own hole in it. An appropriate
        # solution to that may be to compare every contour against one another and determine which ones have holes
        # encompassed entirely by them, and then subtract each hole from the larger polygon and delete the smaller
        # holes. This second solution would definitely lead to more accurate representation of contours, but could
        # possibly be too slow to be viable.

        list_polygons = []
        pixel_list = dict_rois_contours[curr_roi][curr_slice]
        for i in range(len(pixel_list)):
            list_qpoints = []
            contour = pixel_list[i]
            for point in contour:
                curr_qpoint = QtCore.QPoint(point[0], point[1])
                list_qpoints.append(curr_qpoint)
            curr_polygon = QtGui.QPolygonF(list_qpoints)
            list_polygons.append(curr_polygon)
        return list_polygons

    def calc_dose_polygon(self, dose_pixluts, contours):
        """
        Calculate a list of polygons to display for a given isodose.
        :param dose_pixluts:
         lookup table (LUT) to get the image pixel values
        :param contours:
          trace outline of the isodose to be displayed
        :return: List of polygons of type QPolygonF.
        """
        list_polygons = []
        for contour in contours:
            list_qpoints = []
            # Slicing controls how many points considered for visualization
            # Essentially effects sharpness of edges, fewer points equals "smoother" edges
            for point in contour[::2]:
                curr_qpoint = QtCore.QPoint(dose_pixluts[0][int(point[0])],
                                            dose_pixluts[1][int(point[1])])
                list_qpoints.append(curr_qpoint)
            curr_polygon = QtGui.QPolygonF(list_qpoints)
            list_polygons.append(curr_polygon)
        return list_polygons

    def get_qpen(self, color, style=1, widthF=1):
        """
        The color and style for ROI structure and isodose display.
        :param color:
         Color of the region. QColor type.
        :param style:
         Style of the contour line. NoPen: 0  SolidLine: 1  DashLine: 2  DotLine: 3  DashDotLine: 4  DashDotDotLine: 5
        :param widthF:
         Width of the contour line.
        :return: QPen object.
        """
        pen = QtGui.QPen(color)
        pen.setStyle(style)
        pen.setWidthF(widthF)
        return pen

    def zoom_in(self):
        self.zoom *= 1.05
        self.update_view(zoom_change=True)

    def zoom_out(self):
        self.zoom /= 1.05
        self.update_view(zoom_change=True)
Пример #19
0
class UITransferROIWindow:
    def setup_ui(self, transfer_roi_window_instance,
                 signal_roi_transferred_to_fixed_container,
                 signal_roi_transferred_to_moving_container):
        self.patient_dict_container = PatientDictContainer()
        self.moving_dict_container = MovingDictContainer()
        self.fixed_image_initial_rois = self.patient_dict_container.get("rois")
        self.moving_image_initial_rois = self.moving_dict_container.get("rois")
        self.transfer_roi_window_instance = transfer_roi_window_instance
        self.signal_roi_transferred_to_fixed_container = \
            signal_roi_transferred_to_fixed_container
        self.signal_roi_transferred_to_moving_container = \
            signal_roi_transferred_to_moving_container
        self.fixed_to_moving_rois = {}
        self.moving_to_fixed_rois = {}
        self.add_suffix = True
        self.progress_window = ProgressWindow(
            self, QtCore.Qt.WindowTitleHint | QtCore.Qt.WindowCloseButtonHint)
        self.progress_window.setFixedSize(250, 100)
        self.progress_window.signal_loaded \
            .connect(self.onTransferRoiFinished)
        self.progress_window.signal_error.connect(self.onTransferRoiError)

        self.init_layout()

    def retranslate_ui(self, transfer_roi_window_instance):
        _translate = QtCore.QCoreApplication.translate
        transfer_roi_window_instance.setWindowTitle(
            _translate("TransferRoiWindowInstance",
                       "OnkoDICOM - Transfer Region of Interest"))
        self.add_suffix_checkbox.setText(
            _translate("AddSuffixCheckBox", "Add Suffix"))
        self.patient_A_label.setText(
            _translate("PatientAROILabel", "First Image Set ROIs"))
        self.patient_B_label.setText(
            _translate("PatientBROILabel", "Second Image Set ROIs"))
        self.transfer_all_rois_to_patient_B_button.setText(
            _translate("ROITransferToBButton", "All"))
        self.transfer_all_rois_to_patient_A_button.setText(
            _translate("ROITransferToAButton", "All"))
        self.save_button.setText(_translate("SaveButton", "Save"))
        self.reset_button.setText(_translate("ResetButton", "Reset"))

    def init_layout(self):
        """
        Initialize the layout for the Transfer ROI Window.
        """
        if platform.system() == 'Darwin':
            self.stylesheet_path = "res/stylesheet.qss"
        else:
            self.stylesheet_path = "res/stylesheet-win-linux.qss"
        stylesheet = open(resource_path(self.stylesheet_path)).read()
        window_icon = QIcon()
        window_icon.addPixmap(QPixmap(resource_path("res/images/icon.ico")),
                              QIcon.Normal, QIcon.Off)
        self.transfer_roi_window_instance.setObjectName(
            "TransferRoiWindowInstance")
        self.transfer_roi_window_instance.setWindowIcon(window_icon)

        # Creating a grid layout to hold all elements
        self.transfer_roi_window_grid_layout = QGridLayout()
        self.transfer_roi_window_grid_layout.setColumnStretch(0, 1)
        self.transfer_roi_window_grid_layout.setColumnStretch(1, 1)
        self.transfer_roi_window_grid_layout.setColumnStretch(2, 1)

        self.init_patient_labels()
        self.init_transfer_arrow_buttons()
        self.init_patient_A_initial_roi_list()
        self.init_patient_B_rois_to_A_layout()
        self.init_patient_A_rois_to_B_layout()
        self.init_patient_B_initial_roi_list()
        self.init_add_suffix_checkbox()
        self.init_save_and_reset_button_layout()

        # Create a new central widget to hold the grid layout
        self.transfer_roi_window_instance_central_widget = QWidget()
        self.transfer_roi_window_instance_central_widget.setLayout(
            self.transfer_roi_window_grid_layout)
        self.retranslate_ui(self.transfer_roi_window_instance)
        self.transfer_roi_window_instance.setStyleSheet(stylesheet)
        self.transfer_roi_window_instance.setCentralWidget(
            self.transfer_roi_window_instance_central_widget)
        QtCore.QMetaObject.connectSlotsByName(
            self.transfer_roi_window_instance)

    def init_transfer_arrow_buttons(self):
        """
        Initialize the layout for arrow buttons

        """
        self.transfer_all_rois_to_patient_B_button = QPushButton()
        self.transfer_all_rois_to_patient_B_button.setObjectName(
            "ROITransferToBButton")

        transfer_all_rois_to_patient_B_icon = QtGui.QIcon()
        transfer_all_rois_to_patient_B_icon.addPixmap(
            QtGui.QPixmap(
                resource_path('res/images/btn-icons/forward_slide_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.transfer_all_rois_to_patient_B_button \
            .setIcon(transfer_all_rois_to_patient_B_icon)
        self.transfer_all_rois_to_patient_B_button.clicked.connect(
            self.transfer_all_rois_to_patient_B_button_clicked)
        self.transfer_roi_window_grid_layout.addWidget(
            self.transfer_all_rois_to_patient_B_button, 1, 1)

        self.transfer_all_rois_to_patient_A_button = QPushButton()
        self.transfer_all_rois_to_patient_A_button.setObjectName(
            "ROITransferToAButton")
        self.transfer_all_rois_to_patient_A_button.setMaximumWidth(100)
        transfer_all_rois_to_patient_A_icon = QtGui.QIcon()
        transfer_all_rois_to_patient_A_icon.addPixmap(
            QtGui.QPixmap(
                resource_path('res/images/btn-icons/backward_slide_icon.png')),
            QtGui.QIcon.Normal, QtGui.QIcon.On)
        self.transfer_all_rois_to_patient_A_button \
            .setIcon(transfer_all_rois_to_patient_A_icon)
        self.transfer_all_rois_to_patient_A_button.clicked.connect(
            self.transfer_all_rois_to_patient_A_button_clicked)
        self.transfer_roi_window_grid_layout.addWidget(
            self.transfer_all_rois_to_patient_A_button, 2, 1)

    def transfer_all_rois_to_patient_B_button_clicked(self):
        """
        This function is triggered when the right arrow button is clicked.
        """
        self.fixed_to_moving_rois.clear()
        self.patient_A_rois_to_B_list_widget.clear()

        for i in range(0, len(self.fixed_image_initial_rois)):
            self.patient_A_initial_roi_double_clicked(
                self.patient_A_initial_rois_list_widget.item(i))

    def transfer_all_rois_to_patient_A_button_clicked(self):
        """
        This function is triggered when the left arrow button is clicked.
        """
        self.moving_to_fixed_rois.clear()
        self.patient_B_rois_to_A_list_widget.clear()

        for i in range(0, len(self.moving_image_initial_rois)):
            self.patient_B_initial_roi_double_clicked(
                self.patient_B_initial_rois_list_widget.item(i))

    def init_add_suffix_checkbox(self):
        """
        Initialize the layout for add suffix checkbox
        """
        self.add_suffix_checkbox = QCheckBox()
        self.add_suffix_checkbox.setObjectName("AddSuffixCheckBox")
        self.add_suffix_checkbox.setChecked(self.add_suffix)
        self.add_suffix_checkbox.clicked.connect(
            self.add_suffix_checkbox_clicked)
        self.transfer_roi_window_grid_layout.addWidget(
            self.add_suffix_checkbox, 3, 0)

    def init_patient_labels(self):
        """
        Initialize the layout for two patient labels
        """
        self.patient_A_label = QLabel()
        self.patient_A_label.setObjectName("PatientAROILabel")
        self.patient_A_label.setMinimumHeight(50)
        self.patient_A_label.setAlignment(Qt.AlignCenter)
        self.patient_A_label.setStyleSheet(
            "QLabel { background-color : green; color : white; "
            "font-size: 15pt; font-weight: bold;}")

        self.patient_B_label = QLabel()
        self.patient_B_label.setObjectName("PatientBROILabel")
        self.patient_B_label.setMinimumHeight(50)
        self.patient_B_label.setAlignment(Qt.AlignCenter)
        self.patient_B_label.setStyleSheet(
            "QLabel { background-color : red; color : white; "
            "font-size: 15pt; font-weight: bold;}")

        self.transfer_roi_window_grid_layout.addWidget(self.patient_A_label, 0,
                                                       0)
        self.transfer_roi_window_grid_layout.addWidget(self.patient_B_label, 0,
                                                       2)

    def init_save_and_reset_button_layout(self):
        """
        Initialize the layout for save and reset buttons
        """
        self.reset_and_save_buttons_layout = QHBoxLayout()
        self.reset_button = QPushButton()
        self.reset_button.setObjectName("ResetButton")
        self.reset_button.clicked.connect(self.reset_clicked)
        self.save_button = QPushButton()
        self.save_button.setObjectName("SaveButton")
        self.save_button.setDisabled(True)
        self.save_button.clicked.connect(self.transfer_roi_clicked)

        self.reset_and_save_buttons_layout.setAlignment(Qt.AlignRight)
        self.reset_and_save_buttons_layout.addWidget(self.reset_button)
        self.reset_and_save_buttons_layout.addWidget(self.save_button)

        # Create a widget to hold Reset and Save buttons
        self.reset_and_save_button_central_widget = QWidget()
        self.reset_and_save_button_central_widget.setLayout(
            self.reset_and_save_buttons_layout)

        self.transfer_roi_window_grid_layout.addWidget(
            self.reset_and_save_button_central_widget, 3, 2)

    def add_suffix_checkbox_clicked(self):
        """
        This function is triggered when the add suffix checkbox is clicked
        """
        self.add_suffix = self.add_suffix_checkbox.isChecked()

    def init_patient_B_rois_to_A_layout(self):
        """
        Initialize the layout for transfer rois from B to A container
        """
        # Create scrolling area widget to contain the content.
        self.patient_B_rois_to_A_list_widget = QListWidget(self)
        self.transfer_roi_window_grid_layout \
            .addWidget(self.patient_B_rois_to_A_list_widget, 2, 0)
        self.patient_B_rois_to_A_list_widget.itemDoubleClicked.connect(
            self.patient_B_to_A_rois_double_clicked)

    def init_patient_A_rois_to_B_layout(self):
        """
        Initialize the layout for transfer rois from A to B container
        """
        self.patient_A_rois_to_B_list_widget = QListWidget(self)
        self.transfer_roi_window_grid_layout \
            .addWidget(self.patient_A_rois_to_B_list_widget, 1, 2)
        self.patient_A_rois_to_B_list_widget.itemDoubleClicked.connect(
            self.patient_A_to_B_rois_double_clicked)

    def init_patient_A_initial_roi_list(self):
        """
        Initialize the layout for patient A's roi list
        """
        self.patient_A_initial_rois_list_widget = QListWidget(self)
        self.patient_A_initial_rois_list_widget.itemDoubleClicked.connect(
            self.patient_A_initial_roi_double_clicked)
        for idx in self.fixed_image_initial_rois:
            roi_label = QListWidgetItem(
                self.fixed_image_initial_rois[idx]['name'])
            roi_label.setForeground(Qt.darkGreen)
            roi_label.setData(Qt.UserRole, self.fixed_image_initial_rois[idx])
            self.patient_A_initial_rois_list_widget.addItem(roi_label)
        self.transfer_roi_window_grid_layout.addWidget(
            self.patient_A_initial_rois_list_widget, 1, 0)

    def init_patient_B_initial_roi_list(self):
        """
        Initialize the layout for patient B's roi list
        """
        self.patient_B_initial_rois_list_widget = QListWidget(self)
        self.patient_B_initial_rois_list_widget.itemDoubleClicked.connect(
            self.patient_B_initial_roi_double_clicked)
        for idx in self.moving_image_initial_rois:
            roi_label = QListWidgetItem(
                self.moving_image_initial_rois[idx]['name'])
            roi_label.setForeground(Qt.red)
            roi_label.setData(Qt.UserRole, self.moving_image_initial_rois[idx])

            self.patient_B_initial_rois_list_widget.addItem(roi_label)
        self.transfer_roi_window_grid_layout.addWidget(
            self.patient_B_initial_rois_list_widget, 2, 2)

    def patient_A_to_B_rois_double_clicked(self, item):
        """
        This function is triggered when a roi in "A to B" list is
        double-clicked.
        """
        roi_to_remove = item.data(Qt.UserRole)
        to_delete_value = roi_to_remove['name']
        self.fixed_to_moving_rois.pop(to_delete_value)
        self.patient_A_rois_to_B_list_widget.clear()
        for key, value in self.fixed_to_moving_rois.items():
            roi_label = QListWidgetItem(value)
            roi_label.setForeground(Qt.red)
            roi_label.setData(Qt.UserRole, {'name': key})
            self.patient_A_rois_to_B_list_widget.addItem(roi_label)
        if self.transfer_list_is_empty():
            self.save_button.setDisabled(True)

    def patient_B_to_A_rois_double_clicked(self, item):
        """
        This function is triggered when a roi in "B to A" list is
        double-clicked.
        """
        roi_to_remove = item.data(Qt.UserRole)
        to_delete_value = roi_to_remove['name']
        self.moving_to_fixed_rois.pop(to_delete_value)
        self.patient_B_rois_to_A_list_widget.clear()
        for key, value in self.moving_to_fixed_rois.items():
            roi_label = QListWidgetItem(value)
            roi_label.setForeground(Qt.red)
            roi_label.setData(Qt.UserRole, {'name': key})
            self.patient_B_rois_to_A_list_widget.addItem(roi_label)
        if self.transfer_list_is_empty():
            self.save_button.setDisabled(True)

    def patient_A_initial_roi_double_clicked(self, item):
        """
        This function is triggered when a roi in patient A's roi list is
        double-clicked.
        """
        roi_to_add = item.data(Qt.UserRole)
        transferred_roi_name = roi_to_add['name']

        # If the clicked roi is already transferred, return
        if transferred_roi_name in self.fixed_to_moving_rois.keys():
            QMessageBox.about(self, "Transfer Failed",
                              "Chosen ROI has already been transferred!")
            return
        # Create a set to store all current roi names in target patient
        # including both initial rois name and added roi names so far
        patient_B_initial_roi_name_list = set()

        for item in self.fixed_to_moving_rois.values():
            patient_B_initial_roi_name_list.add(item)
        for idx in self.moving_image_initial_rois:
            patient_B_initial_roi_name_list.add(
                self.moving_image_initial_rois[idx]['name'])

        # Check if clicked roi name has duplicate
        # in patient B's initial roi names list
        if transferred_roi_name in patient_B_initial_roi_name_list:
            if self.add_suffix:
                transferred_roi_name = generate_non_duplicated_name(
                    transferred_roi_name, patient_B_initial_roi_name_list)
            else:
                QMessageBox.about(
                    self, "Transfer Failed", "Duplicated ROI name. "
                    "Please consider adding suffix.")
                return

        # Add clicked roi to transferred list
        self.fixed_to_moving_rois[roi_to_add['name']] = transferred_roi_name
        roi_label = QListWidgetItem(transferred_roi_name)
        roi_label.setForeground(Qt.red)
        roi_label.setData(Qt.UserRole, roi_to_add)
        self.patient_A_rois_to_B_list_widget.addItem(roi_label)
        self.save_button.setDisabled(False)

    def patient_B_initial_roi_double_clicked(self, item):
        """
        This function is triggered when a roi in patient B's roi list is
        double-clicked.
        """
        roi_to_add = item.data(Qt.UserRole)
        transferred_roi_name = roi_to_add['name']

        # If the clicked roi is already transferred, return
        if transferred_roi_name in self.moving_to_fixed_rois.keys():
            QMessageBox.about(self, "Transfer Failed",
                              "Chosen ROI has already been transferred!")
            return

        # Create a set to store all current roi names in target patient
        # including both initial rois name and added roi names so far
        patient_A_current_roi_name_list = set()

        for item in self.moving_to_fixed_rois.values():
            patient_A_current_roi_name_list.add(item)

        for idx in self.fixed_image_initial_rois:
            patient_A_current_roi_name_list.add(
                self.fixed_image_initial_rois[idx]['name'])

        # Check if clicked roi name has duplicate in
        # target patient's roi names list
        if transferred_roi_name in patient_A_current_roi_name_list:
            # if add suffix is ticked, iteratively try adding suffix
            # from _A to _Z, stop when no duplicate found
            if self.add_suffix:
                transferred_roi_name = generate_non_duplicated_name(
                    transferred_roi_name, patient_A_current_roi_name_list)
            else:
                QMessageBox.about(
                    self, "Transfer Failed", "Duplicated ROI name. "
                    "Please consider adding suffix.")
                return

        # Add clicked roi to transferred list
        self.moving_to_fixed_rois[roi_to_add['name']] = transferred_roi_name
        roi_label = QListWidgetItem(transferred_roi_name)
        roi_label.setForeground(Qt.red)
        roi_label.setData(Qt.UserRole, roi_to_add)
        self.patient_B_rois_to_A_list_widget.addItem(roi_label)
        self.save_button.setDisabled(False)

    def reset_clicked(self):
        """
        This function is triggered when reset button is clicked.
        """
        self.fixed_to_moving_rois.clear()
        self.moving_to_fixed_rois.clear()
        self.patient_A_rois_to_B_list_widget.clear()
        self.patient_B_rois_to_A_list_widget.clear()
        self.save_button.setDisabled(True)

    def transfer_list_is_empty(self):
        """
        This function is to check if the transfer list is empty
        """
        return len(self.fixed_to_moving_rois) == 0 \
               and len(self.moving_to_fixed_rois) == 0

    def save_clicked(self, interrupt_flag, progress_callback):
        """
        This function is triggered when the save button is clicked. It contains
        all steps in the ROI transferring process.

        :param interrupt_flag: interrupt flag to stop process
        :param progress_callback: signal that receives the current
                                  progress of the loading.
        """
        progress_callback.emit(("Converting images to sitk", 0))

        # check if interrupt flag is set
        if not check_interrupt_flag(interrupt_flag):
            return False

        rtss = self.patient_dict_container.get("dataset_rtss")

        # get sitk for the fixed image
        dicom_image = read_dicom_image_to_sitk(
            self.patient_dict_container.filepaths)

        if not check_interrupt_flag(interrupt_flag):
            return False

        # get array of roi indexes from sitk images
        rois_images_fixed = transform_point_set_from_dicom_struct(
            dicom_image,
            rtss,
            self.fixed_to_moving_rois.keys(),
            spacing_override=None,
            interrupt_flag=interrupt_flag)

        moving_rtss = self.moving_dict_container.get("dataset_rtss")

        if not check_interrupt_flag(interrupt_flag):
            return False

        # get sitk for the moving image
        moving_dicom_image = read_dicom_image_to_sitk(
            self.moving_dict_container.filepaths)

        if not check_interrupt_flag(interrupt_flag):
            return False

        # get array of roi indexes from sitk images
        progress_callback \
            .emit(("Retrieving ROIs from \nboth image sets", 20))

        # check if interrupt flag is set
        if not check_interrupt_flag(interrupt_flag):
            return False

        if moving_rtss:
            rois_images_moving = transform_point_set_from_dicom_struct(
                moving_dicom_image,
                moving_rtss,
                self.moving_to_fixed_rois.keys(),
                spacing_override=None,
                interrupt_flag=interrupt_flag)
        else:
            rois_images_moving = ([], [])

        if not check_interrupt_flag(interrupt_flag):
            return False

        tfm = self.moving_dict_container.get("tfm")

        progress_callback.emit(
            ("Transfering ROIs from moving \nto fixed image set", 40))

        # check if interrupt flag is set
        if not check_interrupt_flag(interrupt_flag):
            return False

        # transform roi from moving_dict to fixed_dict
        self.transfer_rois(self.moving_to_fixed_rois, tfm, dicom_image,
                           rois_images_moving, self.patient_dict_container)

        progress_callback.emit(
            ("Transfering ROIs from fixed \nto moving image set", 60))

        if not check_interrupt_flag(interrupt_flag):
            return False

        # transform roi from moving_dict to fixed_dict
        self.transfer_rois(self.fixed_to_moving_rois, tfm.GetInverse(),
                           moving_dicom_image, rois_images_fixed,
                           self.moving_dict_container)

        progress_callback.emit(("Saving ROIs to RTSS", 80))

        # check if interrupt flag is set
        if not check_interrupt_flag(interrupt_flag):
            return False
        progress_callback.emit(("Reloading window", 90))
        return True

    def transfer_roi_clicked(self):
        """
        telling progress window to start ROI transfer
        """
        self.progress_window.start(self.save_clicked)

    def onTransferRoiError(self, exception):
        """
        This function is triggered when there is an error in the
        ROI transferring process.

        :param exception: exception thrown
        """
        QMessageBox.about(self.progress_window, "Unable to transfer ROIs",
                          "Please check your image set and ROI data.")
        self.progress_window.close()

    def onTransferRoiFinished(self, result):
        """
        This function is triggered when ROI transferring process is finished.
        """
        # emit changed dataset to structure_modified function and
        # auto_save_roi function
        if result[0] is True:
            if len(self.fixed_to_moving_rois) > 0:
                self.signal_roi_transferred_to_moving_container.emit(
                    (self.moving_dict_container.get("dataset_rtss"), {
                        "transfer": None
                    }))
            if len(self.moving_to_fixed_rois) > 0:
                self.signal_roi_transferred_to_fixed_container.emit(
                    (self.patient_dict_container.get("dataset_rtss"), {
                        "transfer": None
                    }))
            self.progress_window.close()
            QMessageBox.about(self.transfer_roi_window_instance, "Saved",
                              "ROIs are successfully transferred!")
        else:
            QMessageBox.about(self.transfer_roi_window_instance, "Cancelled",
                              "ROIs Transfer is cancelled.")
        self.closeWindow()

    def transfer_rois(self, transfer_dict, tfm, reference_image,
                      original_roi_list, patient_dict_container):
        """
        Converting (transferring) ROIs from one image set to another and save
        the transferred rois to rtss.
        :param transfer_dict: dictionary of rois to be transfer.
        key is original roi names, value is the name after transferred.
        :param original_roi_list: tuple of sitk rois from the base image.
        :param tfm: the tfm that contains information for transferring rois
        :param reference_image: the reference (base) image
        :param patient_dict_container: container of the transfer image set.

        """
        for roi_name, new_roi_name in transfer_dict.items():
            for index, name in enumerate(original_roi_list[1]):
                if name == roi_name:
                    sitk_image = original_roi_list[0][index]
                    new_contour = apply_linear_transform(
                        input_image=sitk_image,
                        transform=tfm,
                        reference_image=reference_image,
                        is_structure=True)
                    contour = sitk.GetArrayViewFromImage(new_contour)
                    contours = np.transpose(contour.nonzero())
                    self.save_roi_to_patient_dict_container(
                        contours, new_roi_name, patient_dict_container)

    def save_roi_to_patient_dict_container(self, contours, roi_name,
                                           patient_dict_container):
        """
        Save the transferred ROI to the corresponding rtss.

        :param contours: np array of coordinates of the ROI to be saved.
        :param roi_name: name of the ROI to be saved
        :param patient_dict_container: container of the transfer image set.

        """
        pixels_coords_dict = {}
        slice_ids_dict = get_dict_slice_to_uid(patient_dict_container)
        total_slices = len(slice_ids_dict)
        for contour in contours:
            curr_slice_id = total_slices - contour[0]
            if curr_slice_id >= total_slices:
                curr_slice_id = 0
            if curr_slice_id not in pixels_coords_dict:
                pixels_coords_dict[curr_slice_id] = [
                    tuple([contour[2], contour[1]])
                ]
            else:
                pixels_coords_dict[curr_slice_id].append(
                    tuple([contour[2], contour[1]]))

        rois_to_save = {}
        for key in pixels_coords_dict.keys():
            coords = pixels_coords_dict[key]
            polygon_list = ROI.calculate_concave_hull_of_points(coords)
            if len(polygon_list) > 0:
                rois_to_save[key] = {
                    'ds': patient_dict_container.dataset[key],
                    'coords': polygon_list
                }
        roi_list = ROI.convert_hull_list_to_contours_data(
            rois_to_save, patient_dict_container)

        if len(roi_list) > 0:
            print("Saving ", roi_name)
            if isinstance(patient_dict_container, MovingDictContainer):
                new_rtss = ROI.create_roi(
                    patient_dict_container.get("dataset_rtss"),
                    roi_name,
                    roi_list,
                    rtss_owner="MOVING")
                self.moving_dict_container.set("dataset_rtss", new_rtss)
                self.moving_dict_container.set("rtss_modified", True)
            else:
                new_rtss = ROI.create_roi(
                    patient_dict_container.get("dataset_rtss"), roi_name,
                    roi_list)
                self.patient_dict_container.set("dataset_rtss", new_rtss)
                self.patient_dict_container.set("rtss_modified", True)

    def closeWindow(self):
        """
        function to close transfer roi window
        """
        self.close()
Пример #20
0
def create_initial_model():
    """
    This function initializes all the attributes in the PatientDictContainer
    model required for the operation of the main window. This should be
    called before the main window's components are constructed, but after
    the initial values of the PatientDictContainer instance are set (i.e.
    dataset and filepaths).
    """
    ##############################
    #  LOAD PATIENT INFORMATION  #
    ##############################
    patient_dict_container = PatientDictContainer()

    dataset = patient_dict_container.dataset
    filepaths = patient_dict_container.filepaths
    patient_dict_container.set("rtss_modified", False)

    # Determine if dataset is CT for aditional rescaling
    is_ct = False
    if dataset[0].Modality == "CT":
        is_ct = True

    if 'WindowWidth' in dataset[0]:
        if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat):
            window = int(dataset[0].WindowWidth)
        elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue):
            window = int(dataset[0].WindowWidth[1])
    else:
        window = int(400)

    if 'WindowCenter' in dataset[0]:
        if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat):
            level = int(dataset[0].WindowCenter) - window / 2
        elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue):
            level = int(dataset[0].WindowCenter[1]) - window / 2
        if is_ct:
            level += CT_RESCALE_INTERCEPT
    else:
        level = int(800)

    patient_dict_container.set("window", window)
    patient_dict_container.set("level", level)

    # Check to see if the imageWindowing.csv file exists
    if os.path.exists(data_path('imageWindowing.csv')):
        # If it exists, read data from file into the self.dict_windowing
        # variable
        dict_windowing = {}
        with open(data_path('imageWindowing.csv'), "r") \
                as fileInput:
            next(fileInput)
            dict_windowing["Normal"] = [window, level]
            for row in fileInput:
                # Format: Organ - Scan - Window - Level
                items = [item for item in row.split(',')]
                dict_windowing[items[0]] = [int(items[2]), int(items[3])]
    else:
        # If csv does not exist, initialize dictionary with default values
        dict_windowing = {
            "Normal": [window, level],
            "Lung": [1600, -300],
            "Bone": [1400, 700],
            "Brain": [160, 950],
            "Soft Tissue": [400, 800],
            "Head and Neck": [275, 900]
        }

    patient_dict_container.set("dict_windowing", dict_windowing)

    if not patient_dict_container.has_attribute("scaled"):
        patient_dict_container.set("scaled", True)
        pixel_values = convert_raw_data(dataset, False, is_ct)
    else:
        pixel_values = convert_raw_data(dataset, True)

    # Calculate the ratio between x axis and y axis of 3 views
    pixmap_aspect = {}
    pixel_spacing = dataset[0].PixelSpacing
    slice_thickness = dataset[0].SliceThickness
    pixmap_aspect["axial"] = pixel_spacing[1] / pixel_spacing[0]
    pixmap_aspect["sagittal"] = pixel_spacing[1] / slice_thickness
    pixmap_aspect["coronal"] = slice_thickness / pixel_spacing[0]
    pixmaps_axial, pixmaps_coronal, pixmaps_sagittal = \
        get_pixmaps(pixel_values, window, level, pixmap_aspect)

    patient_dict_container.set("pixmaps_axial", pixmaps_axial)
    patient_dict_container.set("pixmaps_coronal", pixmaps_coronal)
    patient_dict_container.set("pixmaps_sagittal", pixmaps_sagittal)
    patient_dict_container.set("pixel_values", pixel_values)
    patient_dict_container.set("pixmap_aspect", pixmap_aspect)

    basic_info = get_basic_info(dataset[0])
    patient_dict_container.set("basic_info", basic_info)

    patient_dict_container.set("dict_uid", dict_instance_uid(dataset))

    # Set RTSS attributes
    patient_dict_container.set("file_rtss", filepaths['rtss'])
    patient_dict_container.set("dataset_rtss", dataset['rtss'])
    dict_raw_contour_data, dict_numpoints = \
        ImageLoading.get_raw_contour_data(dataset['rtss'])
    patient_dict_container.set("raw_contour", dict_raw_contour_data)

    # dict_dicom_tree_rtss will be set in advance if the program
    # generates a new rtss through the execution of
    # ROI.create_initial_rtss_from_ct(...)
    if patient_dict_container.get("dict_dicom_tree_rtss") is None:
        dicom_tree_rtss = DicomTree(filepaths['rtss'])
        patient_dict_container.set("dict_dicom_tree_rtss",
                                   dicom_tree_rtss.dict)

    patient_dict_container.set(
        "list_roi_numbers",
        ordered_list_rois(patient_dict_container.get("rois")))
    patient_dict_container.set("selected_rois", [])

    patient_dict_container.set("dict_polygons_axial", {})
    patient_dict_container.set("dict_polygons_sagittal", {})
    patient_dict_container.set("dict_polygons_coronal", {})

    # Set RTDOSE attributes
    if patient_dict_container.has_modality("rtdose"):
        dicom_tree_rtdose = DicomTree(filepaths['rtdose'])
        patient_dict_container.set("dict_dicom_tree_rtdose",
                                   dicom_tree_rtdose.dict)

        patient_dict_container.set("dose_pixluts", get_dose_pixluts(dataset))

        patient_dict_container.set("selected_doses", [])

        # overwritten if RTPLAN is present.
        patient_dict_container.set("rx_dose_in_cgray", 1)

    # Set RTPLAN attributes
    if patient_dict_container.has_modality("rtplan"):
        # the TargetPrescriptionDose is type 3 (optional), so it may not be
        # there However, it is preferable to the sum of the beam doses
        # DoseReferenceStructureType is type 1 (value is mandatory), but it
        # can have a value of ORGAN_AT_RISK rather than TARGET in which case
        # there will *not* be a TargetPrescriptionDose and even if it is
        # TARGET, that's no guarantee that TargetPrescriptionDose will be
        # encoded and have a value
        rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"])
        patient_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray)

        dicom_tree_rtplan = DicomTree(filepaths['rtplan'])
        patient_dict_container.set("dict_dicom_tree_rtplan",
                                   dicom_tree_rtplan.dict)

    # Set SR attributes
    if patient_dict_container.has_modality("sr-cd"):
        dicom_tree_sr_clinical_data = DicomTree(filepaths['sr-cd'])
        patient_dict_container.set("dict_dicom_tree_sr_cd",
                                   dicom_tree_sr_clinical_data.dict)

    if patient_dict_container.has_modality("sr-rad"):
        dicom_tree_sr_pyrad = DicomTree(filepaths['sr-rad'])
        patient_dict_container.set("dict_dicom_tree_sr_pyrad",
                                   dicom_tree_sr_pyrad.dict)