Пример #1
0
 def __init__(self, query_expression, metric="iou", stack_size=7, steps=15):
     """
     Post processing visually guided search.
     :param query_expression: expression to be optimized
     :param metric: metric to be minimized, like chamfer
     :param stack_size: max stack size required in any program
     :param steps: max tim step of any program
     """
     self.parser = ParseModelOutput(canvas_shape=[64, 64],
                                    stack_size=stack_size,
                                    unique_draws=None,
                                    steps=steps)
     self.query_expression = query_expression
     self.get_graph_structure(query_expression)
     self.metric = metric
     self.errors = []
Пример #2
0
    def __init__(self,
                 labels_path,
                 batch_size=100,
                 train_size=10000,
                 canvas_shape=[64, 64],
                 max_len=13,
                 self_training=False):

        self.labels = torch.load(labels_path + "labels.pt",
                                 map_location=device)
        if isinstance(self.labels, np.ndarray):
            self.labels = torch.from_numpy(self.labels).to(device)
        self.labels = self.labels.long()

        self.self_training = self_training
        if self_training:
            self.images = torch.load(labels_path + "images.pt")

        # pad labels with a stop symbol, should be correct but need to confirm this
        # since infer_programs currently outputs len 13 labels
        self.labels = F.pad(self.labels, (0, 1), 'constant', 399)

        self.train_size = train_size
        self.max_len = max_len
        self.canvas_shape = canvas_shape
        self.batch_size = batch_size

        with open("terminals.txt", "r") as file:
            self.unique_draw = file.readlines()
        for index, e in enumerate(self.unique_draw):
            self.unique_draw[index] = e[0:-1]

        self.parser = ParseModelOutput(self.unique_draw, self.max_len // 2 + 1,
                                       self.max_len, canvas_shape)
        self.expressions = self.parser.labels2exps(self.labels,
                                                   self.labels.shape[1])
        # Remove the stop symbol and later part of the expression
        for index, exp in enumerate(self.expressions):
            self.expressions[index] = exp.split("$")[0]
        self.correct_programs = []
Пример #3
0
def voxels_from_expressions(expressions: List,
                            primitives: dict,
                            max_len=7,
                            downsample=None):
    """This take a generic expression as input and returns the final voxel representation for
    this. The expressions need not be valid.
    :param expressions:
    :param primitives: dictionary, containg shape primitves in voxel grids, for faster
    processing. In general creating all shape primitives on-the-fly is an expensive operation.
    :param max_len: maximum length of programs
    :param downsample: factor by which to downsample voxel grid
    :return images: voxel representation of the expressions
    """
    stacks = []
    unique_draw = sorted(primitives.keys())

    parser = ParseModelOutput(unique_draw,
                              max_len // 2 + 1,
                              max_len, [64, 64, 64],
                              primitives=primitives)
    if downsample:
        meshgrid = np.arange(0, 64, downsample)
        xv, yv, zv = np.meshgrid(meshgrid,
                                 meshgrid,
                                 meshgrid,
                                 sparse=False,
                                 indexing='ij')

    for index, exp in enumerate(expressions):
        program = parser.sim.parse(exp)
        if not validity(program, len(program), len(program) - 1):
            stack = np.zeros((parser.canvas_shape[0], parser.canvas_shape[1],
                              parser.canvas_shape[2]))
            stacks.append(stack)
            continue
        # Use the primitives generated before.
        parser.sim.generate_stack(program, if_primitives=True)
        stack = parser.sim.stack_t
        stack = np.stack(stack, axis=0)[-1, 0, :, :]
        if downsample:
            stack = stack[xv, yv, zv]
        stacks.append(stack)
    stacks = np.stack(stacks, 0).astype(dtype=np.bool)
    return stacks
Пример #4
0
    mean_train_loss = train_loss / (config.train_size // (config.batch_size))
    print('train_loss', mean_train_loss.cpu().numpy(), epoch)
    print('train_reward',
          total_reward / (config.train_size // (config.batch_size)), epoch)

    end = time.time()
    print(f"TIME:{end - start}")

    CD = 0
    test_losses = 0
    total_reward = 0
    imitate_net.eval()
    imitate_net.epsilon = 0
    for batch_idx in range(config.test_size // config.batch_size):
        parser = ParseModelOutput(unique_draw, max_len // 2 + 1, max_len,
                                  config.canvas_shape)
        with torch.no_grad():
            loss = Variable(torch.zeros(1)).cuda()
            Rs = np.zeros((config.batch_size, 1))
            labels = np.zeros((config.batch_size, max_len), dtype=np.int32)
            data_ = next(val_gen)
            one_hot_labels = prepare_input_op(labels, len(unique_draw))
            one_hot_labels = Variable(torch.from_numpy(one_hot_labels)).cuda()
            data = Variable(torch.from_numpy(data_)).cuda()
            outputs, samples = imitate_net([data, one_hot_labels, max_len])
            R = reinforce.generate_rewards(samples,
                                           data_,
                                           time_steps=max_len,
                                           stack_size=max_len // 2 + 1,
                                           reward=reward,
                                           power=power)
Пример #5
0
    print(f'train acc: {accs}')
    del data, loss, loss_sum, train_loss, outputs

    end_time = time.time()
    # print(f"TIME: {end_time - start_time}")

    test_losses = 0
    imitate_net.eval()
    test_reward = 0
    num_correct = 0
    accs = 0
    for batch_idx in range(config.test_size // config.batch_size):
        for k in data_labels_paths.keys():
            with torch.no_grad():
                parser = ParseModelOutput(stack_size=(k + 1) // 2 + 1,
                                          steps=k,
                                          canvas_shape=[64, 64, 64])
                # samples = next(gen_objs_iters[k][1])
                # data_ = np.stack([x[0] for x in samples])
                # labels = (np.stack([x[1][0] for x in samples]),
                #           np.stack([x[1][1] for x in samples]),
                #           np.stack([x[1][2] for x in samples]),
                #           np.stack([x[1][3] for x in samples]))
                data_, labels = next(train_gen_objs[k])
                oh_labels = one_hot_labels(labels).cuda()

                data = Variable(torch.from_numpy(data_)).cuda()

                test_output = imitate_net.test([data, oh_labels, k])

                accs += sum(accuracy(test_output, labels)) / 4
Пример #6
0
for k in data_labels_paths.keys():
    # if using multi gpu training, train and test batch size should be multiple of
    # number of GPU edvices.
    test_batch_size = config.batch_size
    test_gen_objs[k] = generator.get_test_data(test_batch_size,
                                               k,
                                               num_train_images=dataset_sizes[k][0],
                                               num_test_images=dataset_sizes[k][1],
                                               if_primitives=True,
                                               final_canvas=True,
                                               if_jitter=False)

Target_expressions = []
Predicted_expressions = []

parser = ParseModelOutput(generator.unique_draw, max_len // 2 + 1, max_len, [64, 64, 64], primitives=generator.primitives)
imitate_net.eval()
Rs = 0
t1 = time.time()
IOU = {}
total_iou = 0
print('begin testing')
for k in data_labels_paths.keys():
    Rs = 0.0
    for batch_idx in range(dataset_sizes[k][1] // config.batch_size):
        data_, labels = next(test_gen_objs[k])
        data_ = data_[:, :, 0:config.top_k + 1, :, :]
        one_hot_labels = prepare_input_op(labels, len(generator.unique_draw))
        one_hot_labels = Variable(torch.from_numpy(one_hot_labels), volatile=True).cuda()
        data = Variable(torch.from_numpy(data_)).cuda()
        labels = Variable(torch.from_numpy(labels)).cuda()
Пример #7
0
def infer_programs(imitate_net, path, self_training=False, ab=None):
    save_viz = False

    config = read_config.Config("config_cad.yml")

    # Load the terminals symbols of the grammar
    with open("terminals.txt", "r") as file:
        unique_draw = file.readlines()
    for index, e in enumerate(unique_draw):
        unique_draw[index] = e[0:-1]

    config.train_size = 10000
    config.test_size = 3000
    imitate_net.eval()
    imitate_net.epsilon = 0
    parser = ParseModelOutput(unique_draw, max_len // 2 + 1, max_len,
                              config.canvas_shape)
    pred_expressions = []
    if ab is not None:
        pred_labels = np.zeros((config.train_size * ab, max_len))
    else:
        pred_labels = np.zeros((config.train_size, max_len))
    image_path = f"{path}/images/"
    results_path = f"{path}/results/"
    labels_path = f"{path}/labels/"

    os.makedirs(os.path.dirname(image_path), exist_ok=True)
    os.makedirs(os.path.dirname(results_path), exist_ok=True)
    os.makedirs(os.path.dirname(labels_path), exist_ok=True)
    os.makedirs(os.path.dirname(labels_path + "val/"), exist_ok=True)

    generator = Generator()

    train_gen = generator.train_gen(batch_size=config.batch_size,
                                    path="data/cad/cad.h5",
                                    if_augment=False)

    val_gen = generator.val_gen(batch_size=config.batch_size,
                                path="data/cad/cad.h5",
                                if_augment=False)

    Rs = 0
    CDs = 0
    Target_images = []

    start = time.time()
    pred_images = np.zeros((config.train_size, 64, 64))
    for batch_idx in range(config.train_size // config.batch_size):
        with torch.no_grad():
            print(f"Inferring cad batch: {batch_idx}")
            data_ = next(train_gen)
            labels = np.zeros((config.batch_size, max_len), dtype=np.int32)
            one_hot_labels = prepare_input_op(labels, len(unique_draw))
            one_hot_labels = torch.from_numpy(one_hot_labels).to(device)
            data = torch.from_numpy(data_).to(device)

            all_beams, next_beams_prob, all_inputs = imitate_net.beam_search(
                [data[-1, :, 0, :, :], one_hot_labels], beam_width, max_len)

            beam_labels = beams_parser(all_beams,
                                       data_.shape[1],
                                       beam_width=beam_width)

            beam_labels_numpy = np.zeros(
                (config.batch_size * beam_width, max_len), dtype=np.int32)
            Target_images.append(data_[-1, :, 0, :, :])
            for i in range(data_.shape[1]):
                beam_labels_numpy[i * beam_width:(i + 1) *
                                  beam_width, :] = beam_labels[i]

            # find expression from these predicted beam labels
            expressions = [""] * config.batch_size * beam_width
            for i in range(config.batch_size * beam_width):
                for j in range(max_len):
                    expressions[i] += unique_draw[beam_labels_numpy[i, j]]
            for index, prog in enumerate(expressions):
                expressions[index] = prog.split("$")[0]

            pred_expressions += expressions
            predicted_images = image_from_expressions(parser, expressions)
            target_images = data_[-1, :, 0, :, :].astype(dtype=bool)
            target_images_new = np.repeat(target_images,
                                          axis=0,
                                          repeats=beam_width)

            # beam_R = np.sum(np.logical_and(target_images_new, predicted_images),
            #                 (1, 2)) / np.sum(np.logical_or(target_images_new, predicted_images), (1, 2))
            #
            # R = np.zeros((config.batch_size, 1))
            # for r in range(config.batch_size):
            #     R[r, 0] = max(beam_R[r * beam_width:(r + 1) * beam_width])
            #
            # Rs += np.mean(R)

            beam_CD = chamfer(target_images_new, predicted_images)

            # select best expression by chamfer distance
            if ab is None:
                best_labels = np.zeros((config.batch_size, max_len))
                for r in range(config.batch_size):
                    idx = np.argmin(beam_CD[r * beam_width:(r + 1) *
                                            beam_width])
                    best_labels[r] = beam_labels[r][idx]
                pred_labels[batch_idx *
                            config.batch_size:batch_idx * config.batch_size +
                            config.batch_size] = best_labels
            else:
                best_labels = np.zeros((config.batch_size * ab, max_len))
                for r in range(config.batch_size):
                    sorted_idx = np.argsort(beam_CD[r * beam_width:(r + 1) *
                                                    beam_width])[:ab]
                    best_labels[r * ab:r * ab +
                                ab] = beam_labels[r][sorted_idx]
                pred_labels[batch_idx * config.batch_size *
                            ab:batch_idx * config.batch_size * ab +
                            config.batch_size * ab] = best_labels

            CD = np.zeros((config.batch_size, 1))
            for r in range(config.batch_size):
                CD[r, 0] = min(beam_CD[r * beam_width:(r + 1) * beam_width])
                pred_images[batch_idx * config.batch_size +
                            r] = predicted_images[r * beam_width + np.argmin(
                                beam_CD[r * beam_width:(r + 1) * beam_width])]

            CDs += np.mean(CD)

            if save_viz:
                for j in range(0, config.batch_size):
                    f, a = plt.subplots(1, beam_width + 1, figsize=(30, 3))
                    a[0].imshow(data_[-1, j, 0, :, :], cmap="Greys_r")
                    a[0].axis("off")
                    a[0].set_title("target")
                    for i in range(1, beam_width + 1):
                        a[i].imshow(predicted_images[j * beam_width + i - 1],
                                    cmap="Greys_r")
                        a[i].set_title("{}".format(i))
                        a[i].axis("off")
                    plt.savefig(
                        image_path +
                        "{}.png".format(batch_idx * config.batch_size + j),
                        transparent=0)
                    plt.close("all")

                    save_viz = False

    print("Inferring cad average chamfer distance: {}".format(
        CDs / (config.train_size // config.batch_size)),
          flush=True)

    Rs = Rs / (config.train_size // config.batch_size)
    CDs = CDs / (config.train_size // config.batch_size)
    print(Rs, CDs)
    results = {"iou": Rs, "chamferdistance": CDs}

    with open(results_path + "results_beam_width_{}.org".format(beam_width),
              'w') as outfile:
        json.dump(results, outfile)

    torch.save(pred_labels, labels_path + "labels.pt")
    # torch.save(pred_images, labels_path + "images.pt")
    if self_training:
        if ab is None:
            torch.save(np.concatenate(Target_images, axis=0),
                       labels_path + "images.pt")
        else:
            torch.save(
                np.repeat(np.concatenate(Target_images, axis=0), ab, axis=0),
                labels_path + "images.pt")

    test_gen = generator.test_gen(batch_size=config.batch_size,
                                  path="data/cad/cad.h5",
                                  if_augment=False)

    pred_expressions = []
    Rs = 0
    CDs = 0
    Target_images = []
    for batch_idx in range(config.test_size // config.batch_size):
        with torch.no_grad():
            print(f"Inferring test cad batch: {batch_idx}")
            data_ = next(test_gen)
            labels = np.zeros((config.batch_size, max_len), dtype=np.int32)
            one_hot_labels = prepare_input_op(labels, len(unique_draw))
            one_hot_labels = torch.from_numpy(one_hot_labels).to(device)
            data = torch.from_numpy(data_).to(device)

            all_beams, next_beams_prob, all_inputs = imitate_net.beam_search(
                [data[-1, :, 0, :, :], one_hot_labels], beam_width, max_len)

            beam_labels = beams_parser(all_beams,
                                       data_.shape[1],
                                       beam_width=beam_width)

            beam_labels_numpy = np.zeros(
                (config.batch_size * beam_width, max_len), dtype=np.int32)
            Target_images.append(data_[-1, :, 0, :, :])
            for i in range(data_.shape[1]):
                beam_labels_numpy[i * beam_width:(i + 1) *
                                  beam_width, :] = beam_labels[i]

            # find expression from these predicted beam labels
            expressions = [""] * config.batch_size * beam_width
            for i in range(config.batch_size * beam_width):
                for j in range(max_len):
                    expressions[i] += unique_draw[beam_labels_numpy[i, j]]
            for index, prog in enumerate(expressions):
                expressions[index] = prog.split("$")[0]

            pred_expressions += expressions
            predicted_images = image_from_expressions(parser, expressions)
            target_images = data_[-1, :, 0, :, :].astype(dtype=bool)
            target_images_new = np.repeat(target_images,
                                          axis=0,
                                          repeats=beam_width)

            beam_CD = chamfer(target_images_new, predicted_images)

            CD = np.zeros((config.batch_size, 1))
            for r in range(config.batch_size):
                CD[r, 0] = min(beam_CD[r * beam_width:(r + 1) * beam_width])

            CDs += np.mean(CD)

    print(f"TEST CD: {CDs / (config.test_size // config.batch_size)}")

    end = time.time()
    print(f"Inference time: {end-start}")
Пример #8
0
def train_generator(generator_net, load_path, save_path, max_epochs=None):
    if max_epochs is None:
        epochs = 500
    else:
        epochs = max_epochs

    labels = torch.load(f"{load_path}/labels/labels.pt", map_location=device)

    # pad with a start and stop token
    labels = np.pad(labels, ((0, 0), (1, 1)), constant_values=399)

    batch_size = 100

    optimizer = optim.Adam(generator_net.parameters(), lr=1e-3)

    generator_net.train()

    best_train_loss = 1e20
    patience = 20
    num_worse = 0
    best_gen_dict = torch.save(generator_net.state_dict(),
                               f"{save_path}/best_gen_dict.pth")

    for epoch in range(epochs):
        start = time.time()
        train_loss = 0
        ce_loss = 0
        kl_loss = 0
        acc = 0
        np.random.shuffle(labels)
        for i in range(0, len(labels), batch_size):
            batch = torch.from_numpy(labels[i:i +
                                            batch_size]).long().to(device)
            optimizer.zero_grad()
            recon_batch, mu, logvar = generator_net(batch)
            ce, kld = generator_net.loss_function(recon_batch, batch, mu,
                                                  logvar)
            loss = ce + 0.1 * kld
            loss.backward()
            train_loss += loss.item() / (len(labels) * (labels.shape[1] - 1))
            ce_loss += ce.item() / (len(labels) * (labels.shape[1] - 1))
            kl_loss += kld.item() / (len(labels) * (labels.shape[1] - 1))
            acc += (recon_batch.permute(1, 2, 0).max(dim=1)[1]
                    == batch[:, 1:]).float().sum() / (len(labels) *
                                                      (labels.shape[1] - 1))
            optimizer.step()
        print(
            f"generator epoch: {epoch}, loss: {train_loss}, accuracy: {acc}, ce: {ce_loss}, kld: {kl_loss}"
        )

        # if (epoch + 1) % 10 == 0:
        #     latents = torch.randn(1, inference_test_size, generator_latent_dim).to(device)
        #     sample_tokens = generator_net.decode(latents, timesteps=labels.shape[1] - 1)
        #     sample_tokens = sample_tokens.permute(1, 0, 2).max(dim=2)[1][:, :-1]
        #     os.makedirs(os.path.dirname(f"wake_sleep_data/generator/tmp/"), exist_ok=True)
        #     os.makedirs(os.path.dirname(f"wake_sleep_data/generator/tmp/val/"), exist_ok=True)
        #     torch.save(sample_tokens, f"wake_sleep_data/generator/tmp/labels.pt")
        #     torch.save(sample_tokens, f"wake_sleep_data/generator/tmp/val/labels.pt")
        #     fid_value = calculate_fid_given_paths(f"wake_sleep_data/generator/tmp",
        #                                           "trained_models/fid-model-three.pth",
        #                                           100,
        #                                           32)
        #     print('FID: ', fid_value)
        #     load_images()

        if train_loss >= best_train_loss:
            num_worse += 1
        else:
            num_worse = 0
            best_train_loss = train_loss
            best_gen_dict = torch.save(generator_net.state_dict(),
                                       f"{save_path}/best_gen_dict.pth")
        if num_worse >= patience:
            # load the best model and stop training
            generator_net.load_state_dict(
                torch.load(f"{save_path}/best_gen_dict.pth"))
            break

        end = time.time()
        print(f'gen epoch time {end-start}')

    train_tokens = torch.zeros((inference_train_size, max_len))
    for i in range(0, inference_train_size, batch_size):
        batch_latents = torch.randn(1, batch_size,
                                    generator_latent_dim).to(device)
        batch_tokens = generator_net.decode(batch_latents,
                                            timesteps=labels.shape[1] - 1)
        batch_tokens = batch_tokens.permute(1, 0, 2).max(dim=2)[1][:, :-1]
        train_tokens[i:i + batch_size] = batch_tokens
    # test_tokens = torch.zeros((inference_test_size, max_len))
    # for i in range(0, inference_test_size, batch_size):
    #     batch_latents = torch.randn(1, batch_size, generator_latent_dim).to(device)
    #     batch_tokens = generator_net.decode(batch_latents, timesteps=labels.shape[1] - 1)
    #     batch_tokens = batch_tokens.permute(1, 0, 2).max(dim=2)[1][:, :-1]
    #     test_tokens[i:i+batch_size] = batch_tokens

    os.makedirs(os.path.dirname(f"{save_path}/"), exist_ok=True)
    torch.save(train_tokens, f"{save_path}/labels.pt")
    # os.makedirs(os.path.dirname(f"{save_path}/val/"), exist_ok=True)
    # torch.save(test_tokens, f"{save_path}/val/labels.pt")

    # fid_value = calculate_fid_given_paths(f"{save_path}",
    #                                       f"trained_models/fid-model-two.pth",
    #                                       100)
    # print('FID: ', fid_value)

    # find expression from labels
    parser = ParseModelOutput(unique_draw, max_len // 2 + 1, max_len, [64, 64])
    expressions = [""] * inference_train_size
    for i in range(inference_train_size):
        for j in range(max_len):
            expressions[i] += unique_draw[int(train_tokens[i, j])]
    for index, prog in enumerate(expressions):
        expressions[index] = prog.split("$")[0]
    pred_images = image_from_expressions(parser,
                                         expressions).astype(np.float32)
    torch.save(pred_images, f"{save_path}/images.pt")

    return epoch + 1
Пример #9
0
def train_inference(imitate_net,
                    path,
                    max_epochs=None,
                    self_training=False,
                    ab=None):
    if max_epochs is None:
        epochs = 1000
    else:
        epochs = max_epochs

    config = read_config.Config("config_synthetic.yml")

    if ab is not None:
        train_size = inference_train_size * ab
    else:
        train_size = inference_train_size

    generator = WakeSleepGen(f"{path}/",
                             batch_size=config.batch_size,
                             train_size=train_size,
                             canvas_shape=config.canvas_shape,
                             max_len=max_len,
                             self_training=True)

    train_gen = generator.get_train_data()

    cad_generator = Generator()
    val_gen = cad_generator.val_gen(batch_size=config.batch_size,
                                    path="data/cad/cad.h5",
                                    if_augment=False)

    for parameter in imitate_net.encoder.parameters():
        parameter.requires_grad = False

    optimizer = optim.Adam(
        [para for para in imitate_net.parameters() if para.requires_grad],
        weight_decay=config.weight_decay,
        lr=config.lr)

    reduce_plat = LearningRate(optimizer,
                               init_lr=config.lr,
                               lr_dacay_fact=0.2,
                               patience=config.patience)

    best_test_loss = 1e20
    torch.save(imitate_net.state_dict(), f"{path}/best_dict.pth")

    best_test_cd = 1e20

    patience = 20
    num_worse = 0

    for epoch in range(epochs):
        start = time.time()
        train_loss = 0
        imitate_net.train()
        for batch_idx in range(train_size //
                               (config.batch_size * config.num_traj)):
            optimizer.zero_grad()
            loss = 0
            # acc = 0
            for _ in range(config.num_traj):
                data, labels = next(train_gen)
                # data = data[:, :, 0:1, :, :]
                one_hot_labels = prepare_input_op(labels,
                                                  len(generator.unique_draw))
                one_hot_labels = torch.from_numpy(one_hot_labels).to(device)
                data = data.to(device)
                labels = labels.to(device)
                outputs = imitate_net([data, one_hot_labels, max_len])
                # acc += float((torch.argmax(outputs, dim=2).permute(1, 0) == labels).float().sum()) \
                #        / (labels.shape[0] * labels.shape[1]) / config.num_traj
                loss_k = (
                    (losses_joint(outputs, labels, time_steps=max_len + 1) /
                     (max_len + 1)) / config.num_traj)
                loss_k.backward()
                loss += float(loss_k)
                del loss_k

            optimizer.step()
            train_loss += loss
            print(f"batch {batch_idx} train loss: {loss}")
            # print(f"acc: {acc}")

        mean_train_loss = train_loss / (train_size // (config.batch_size))
        print(f"epoch {epoch} mean train loss: {mean_train_loss}")
        imitate_net.eval()
        loss = 0
        # acc = 0
        metrics = {"cos": 0, "iou": 0, "cd": 0}
        # IOU = 0
        # COS = 0
        CD = 0
        # correct_programs = 0
        # pred_programs = 0
        for batch_idx in range(inference_test_size // config.batch_size):
            parser = ParseModelOutput(generator.unique_draw, max_len // 2 + 1,
                                      max_len, config.canvas_shape)
            with torch.no_grad():
                labels = np.zeros((config.batch_size, max_len), dtype=np.int32)
                data_ = next(val_gen)
                one_hot_labels = prepare_input_op(labels,
                                                  len(generator.unique_draw))
                one_hot_labels = torch.from_numpy(one_hot_labels).cuda()
                data = torch.from_numpy(data_).cuda()
                # outputs = imitate_net([data, one_hot_labels, max_len])
                # loss_k = (losses_joint(outputs, labels, time_steps=max_len + 1) /
                #          (max_len + 1))
                # loss += float(loss_k)
                test_outputs = imitate_net.test(
                    [data[-1, :, 0, :, :], one_hot_labels, max_len])
                # acc += float((torch.argmax(torch.stack(test_outputs), dim=2).permute(1, 0) == labels[:, :-1]).float().sum()) \
                #         / (len(labels) * (max_len+1)) / (inference_test_size // config.batch_size)
                pred_images, correct_prog, pred_prog = parser.get_final_canvas(
                    test_outputs,
                    if_just_expressions=False,
                    if_pred_images=True)
                # correct_programs += len(correct_prog)
                # pred_programs += len(pred_prog)
                target_images = data_[-1, :, 0, :, :].astype(dtype=bool)
                # iou = np.sum(np.logical_and(target_images, pred_images),
                #              (1, 2)) / \
                #       np.sum(np.logical_or(target_images, pred_images),
                #              (1, 2))
                # cos = cosine_similarity(target_images, pred_images)
                CD += np.sum(chamfer(target_images, pred_images))
                # IOU += np.sum(iou)
                # COS += np.sum(cos)

        # metrics["iou"] = IOU / inference_test_size
        # metrics["cos"] = COS / inference_test_size
        metrics["cd"] = CD / inference_test_size

        test_losses = loss
        test_loss = test_losses / (inference_test_size // (config.batch_size))

        if metrics["cd"] >= best_test_cd:
            num_worse += 1
        else:
            num_worse = 0
            best_test_cd = metrics["cd"]
            torch.save(imitate_net.state_dict(), f"{path}/best_dict.pth")
        if num_worse >= patience:
            # load the best model and stop training
            imitate_net.load_state_dict(torch.load(f"{path}/best_dict.pth"))
            return epoch + 1

        # reduce_plat.reduce_on_plateu(metrics["cd"])
        print(
            f"Epoch {epoch}/100 =>  train_loss: {mean_train_loss}, iou: {0}, cd: {metrics['cd']}, test_mse: {test_loss}, test_acc: {0}"
        )
        # print(f"CORRECT PROGRAMS: {correct_programs}")
        # print(f"PREDICTED PROGRAMS: {pred_programs}")
        # print(f"RATIO: {correct_programs/pred_programs}")

        end = time.time()
        print(f"Inference train time {end-start}")

        del test_losses, outputs, test_outputs

    return epochs
Пример #10
0
def infer_programs(imitate_net, self_training=False, ab=None):
    config = read_config.Config("config_cad.yml")

    # Load the terminals symbols of the grammar
    with open("terminals.txt", "r") as file:
        unique_draw = file.readlines()
    for index, e in enumerate(unique_draw):
        unique_draw[index] = e[0:-1]

    config.train_size = 10000
    config.test_size = 3000
    imitate_net.eval()
    imitate_net.epsilon = 0
    parser = ParseModelOutput(unique_draw, max_len // 2 + 1, max_len,
                              config.canvas_shape)

    generator = Generator()
    test_gen = generator.test_gen(batch_size=config.batch_size,
                                  path="data/cad/cad.h5",
                                  if_augment=False)

    pred_expressions = []
    Rs = 0
    CDs = 0
    Target_images = []
    for batch_idx in range(config.test_size // config.batch_size):
        with torch.no_grad():
            print(f"Inferring test cad batch: {batch_idx}")
            data_ = next(test_gen)
            labels = np.zeros((config.batch_size, max_len), dtype=np.int32)
            one_hot_labels = prepare_input_op(labels, len(unique_draw))
            one_hot_labels = torch.from_numpy(one_hot_labels).to(device)
            data = torch.from_numpy(data_).to(device)

            all_beams, next_beams_prob, all_inputs = imitate_net.beam_search(
                [data[-1, :, 0, :, :], one_hot_labels], beam_width, max_len)

            beam_labels = beams_parser(all_beams,
                                       data_.shape[1],
                                       beam_width=beam_width)

            beam_labels_numpy = np.zeros(
                (config.batch_size * beam_width, max_len), dtype=np.int32)
            Target_images.append(data_[-1, :, 0, :, :])
            for i in range(data_.shape[1]):
                beam_labels_numpy[i * beam_width:(i + 1) *
                                  beam_width, :] = beam_labels[i]

            # find expression from these predicted beam labels
            expressions = [""] * config.batch_size * beam_width
            for i in range(config.batch_size * beam_width):
                for j in range(max_len):
                    expressions[i] += unique_draw[beam_labels_numpy[i, j]]
            for index, prog in enumerate(expressions):
                expressions[index] = prog.split("$")[0]

            pred_expressions += expressions
            predicted_images = image_from_expressions(parser, expressions)
            target_images = data_[-1, :, 0, :, :].astype(dtype=bool)
            target_images_new = np.repeat(target_images,
                                          axis=0,
                                          repeats=beam_width)

            beam_CD = chamfer(target_images_new, predicted_images)

            CD = np.zeros((config.batch_size, 1))
            for r in range(config.batch_size):
                CD[r, 0] = min(beam_CD[r * beam_width:(r + 1) * beam_width])

            CDs += np.mean(CD)

            for j in range(0, config.batch_size):
                f, a = plt.subplots(1, beam_width + 1, figsize=(30, 3))
                a[0].imshow(data_[-1, j, 0, :, :], cmap="Greys_r")
                a[0].axis("off")
                a[0].set_title("target")
                for i in range(1, beam_width + 1):
                    a[i].imshow(predicted_images[j * beam_width + i - 1],
                                cmap="Greys_r")
                    a[i].set_title("{}".format(i))
                    a[i].axis("off")
                plt.savefig("best_lest/" +
                            "{}.png".format(batch_idx * config.batch_size + j),
                            transparent=0)
                plt.close("all")
            # with open("best_st_expressions.txt", "w") as file:
            #     for e in pred_expressions:
            #         file.write(f"{e}\n")
            # break

    return CDs / (config.test_size // config.batch_size)
Пример #11
0
for k in data_labels_paths.keys():
    # if using multi gpu training, train and test batch size should be multiple of
    # number of GPU edvices.
    test_batch_size = config.batch_size
    test_gen_objs[k] = generator.get_test_data(
        test_batch_size,
        k,
        num_train_images=dataset_sizes[k][0],
        num_test_images=dataset_sizes[k][1],
        if_primitives=True,
        if_jitter=False)

Target_expressions = []
Predicted_expressions = []
parser = ParseModelOutput(generator.unique_draw,
                          max_len // 2 + 1,
                          max_len, [64, 64, 64],
                          primitives=generator.primitives)
imitate_net.eval()
Rs = 0
t1 = time.time()
IOU = {}
total_iou = 0
for k in data_labels_paths.keys():
    Rs = 0.0
    for batch_idx in range(dataset_sizes[k][1] // config.batch_size):
        data_, labels = next(test_gen_objs[k])
        data_ = data_[:, :, 0:config.top_k + 1, :, :, :]
        one_hot_labels = prepare_input_op(labels, len(generator.unique_draw))
        one_hot_labels = Variable(torch.from_numpy(one_hot_labels),
                                  volatile=True).cuda()
        data = Variable(torch.from_numpy(data_)).cuda()
Пример #12
0
def infer_progams(csgnet, train_dataset, val_dataset):
    parser = ParseModelOutput(unique_draws,
                              max_len // 2 + 1,
                              max_len, [64, 64, 64],
                              primitives=primitives)
    csgnet.eval()
    datasets = [("train", train_dataset), ("val", val_dataset)]
    dataset_expressions = []
    dataset_stacks = []
    dataset_labels = []
    for name, dataset in datasets:
        predicted_expressions = []
        predicted_stacks = []
        predicted_labels = []
        IOU = {}
        total_iou = 0
        Rs = 0.0
        batch_idx = 0
        count = 0
        for batch in dataset:
            with torch.no_grad():
                print(f"batch {batch_idx}/{len(train_dataset)}")
                batch_idx += 1
                count += len(batch)

                vis_voxels(batch.squeeze().numpy()[:5], "gt")

                batch = batch.to(device)

                outputs = csgnet.test2(batch, max_len)

                labels = [
                    torch.max(o, 1)[1].data.cpu().numpy() for o in outputs
                ]
                labels += [np.full((len(batch), ), len(unique_draws) - 1)]

                stack, _, expressions = parser.get_final_canvas(
                    outputs, if_pred_images=True, if_just_expressions=False)

                vis_voxels(stack[:5], "gen")
                break
                predicted_expressions += expressions
                predicted_stacks.append(stack)
                predicted_labels.append(np.stack(labels).transpose())

                # stacks = parser.expression2stack(expressions)
                data_ = batch.squeeze().cpu().numpy()
                R = np.sum(np.logical_and(stack, data_),
                           (1, 2, 3)) / (np.sum(np.logical_or(stack, data_),
                                                (1, 2, 3)) + 1)
                Rs += np.sum(R)
        IOU = Rs / count
        print(f"IOU on ShapeNet {name}: {IOU}")
        dataset_expressions.append(predicted_expressions)
        dataset_stacks.append(np.concatenate(predicted_stacks, axis=0))
        dataset_labels.append(np.concatenate(predicted_labels, axis=0))

    train_samples = list(zip(dataset_labels[0], list(dataset_stacks[0])))
    val_samples = list(zip(dataset_labels[1], list(dataset_stacks[1])))

    train_dataset = DataLoader(train_samples,
                               batch_size=config.batch_size,
                               shuffle=True,
                               collate_fn=_col)
    val_dataset = DataLoader(val_samples,
                             batch_size=config.batch_size,
                             shuffle=False,
                             collate_fn=_col)

    return train_dataset, val_dataset
Пример #13
0
def train_model(csgnet, train_dataset, val_dataset, max_epochs=None):
    if max_epochs is None:
        epochs = 100
    else:
        epochs = max_epochs

    optimizer = optim.Adam(
        [para for para in csgnet.parameters() if para.requires_grad],
        weight_decay=config.weight_decay,
        lr=config.lr)

    reduce_plat = LearningRate(optimizer,
                               init_lr=config.lr,
                               lr_dacay_fact=0.2,
                               lr_decay_epoch=3,
                               patience=config.patience)

    best_state_dict = None
    patience = 3
    prev_test_loss = 1e20
    prev_test_reward = 0
    num_worse = 0
    for epoch in range(100):
        train_loss = 0
        Accuracies = []
        csgnet.train()
        # Number of times to accumulate gradients
        num_accums = config.num_traj
        batch_idx = 0
        count = 0
        for batch in train_dataset:
            labels = np.stack([x[0] for x in batch])
            data = np.stack([x[1] for x in batch])
            if not len(labels) == config.batch_size:
                continue
            optimizer.zero_grad()
            loss_sum = Variable(torch.zeros(1)).cuda().data

            one_hot_labels = prepare_input_op(labels, len(unique_draws))
            one_hot_labels = Variable(torch.from_numpy(one_hot_labels)).cuda()
            data = Variable(
                torch.from_numpy(data)).cuda().unsqueeze(-1).float()
            labels = Variable(torch.from_numpy(labels)).cuda()

            # forward pass
            outputs = csgnet.forward2([data, one_hot_labels, max_len])

            loss = losses_joint(outputs, labels,
                                time_steps=max_len + 1) / num_accums
            loss.backward()
            loss_sum += loss.data

            batch_idx += 1
            count += len(data)

            if batch_idx % num_accums == 0:
                # Clip the gradient to fixed value to stabilize training.
                torch.nn.utils.clip_grad_norm_(csgnet.parameters(), 20)
                optimizer.step()
                l = loss_sum
                train_loss += l
                # print(f'train loss batch {batch_idx}: {l}')

        mean_train_loss = (train_loss * num_accums) / (count //
                                                       config.batch_size)
        print(f'train loss epoch {epoch}: {float(mean_train_loss)}')
        del data, loss, loss_sum, train_loss, outputs

        test_losses = 0
        acc = 0
        csgnet.eval()
        test_reward = 0
        batch_idx = 0
        count = 0
        for batch in val_dataset:
            labels = np.stack([x[0] for x in batch])
            data = np.stack([x[1] for x in batch])
            if not len(labels) == config.batch_size:
                continue
            parser = ParseModelOutput(unique_draws,
                                      stack_size=(max_len + 1) // 2 + 1,
                                      steps=max_len,
                                      canvas_shape=[64, 64, 64],
                                      primitives=primitives)
            with torch.no_grad():
                one_hot_labels = prepare_input_op(labels, len(unique_draws))
                one_hot_labels = Variable(
                    torch.from_numpy(one_hot_labels)).cuda()
                data = Variable(
                    torch.from_numpy(data)).cuda().unsqueeze(-1).float()
                labels = Variable(torch.from_numpy(labels)).cuda()

                test_output = csgnet.forward2([data, one_hot_labels, max_len])

                l = losses_joint(test_output, labels,
                                 time_steps=max_len + 1).data
                test_losses += l
                acc += float((torch.argmax(torch.stack(test_output), dim=2).permute(1, 0) == labels).float().sum()) \
                / (labels.shape[0] * labels.shape[1])

                test_output = csgnet.test2(data, max_len)

                stack, _, _ = parser.get_final_canvas(
                    test_output,
                    if_pred_images=True,
                    if_just_expressions=False)
                data_ = data.squeeze().cpu().numpy()
                R = np.sum(np.logical_and(stack, data_),
                           (1, 2, 3)) / (np.sum(np.logical_or(stack, data_),
                                                (1, 2, 3)) + 1)
                test_reward += np.sum(R)

            batch_idx += 1
            count += len(data)

        test_reward = test_reward / count

        test_loss = test_losses / (count // config.batch_size)
        acc = acc / (count // config.batch_size)

        if test_loss < prev_test_loss:
            prev_test_loss = test_loss
            best_state_dict = csgnet.state_dict()
            num_worse = 0
        else:
            num_worse += 1
        if num_worse >= patience:
            csgnet.load_state_dict(best_state_dict)
            break

        print(f'test loss epoch {epoch}: {float(test_loss)}')
        print(f'test IOU epoch {epoch}: {test_reward}')
        print(f'test acc epoch {epoch}: {acc}')
        if config.if_schedule:
            reduce_plat.reduce_on_plateu(-test_reward)

        del test_losses, test_output
        if test_reward > prev_test_reward:
            prev_test_reward = test_reward
Пример #14
0
class WakeSleepGen:
    def __init__(self,
                 labels_path,
                 batch_size=100,
                 train_size=10000,
                 canvas_shape=[64, 64],
                 max_len=13,
                 self_training=False):

        self.labels = torch.load(labels_path + "labels.pt",
                                 map_location=device)
        if isinstance(self.labels, np.ndarray):
            self.labels = torch.from_numpy(self.labels).to(device)
        self.labels = self.labels.long()

        self.self_training = self_training
        if self_training:
            self.images = torch.load(labels_path + "images.pt")

        # pad labels with a stop symbol, should be correct but need to confirm this
        # since infer_programs currently outputs len 13 labels
        self.labels = F.pad(self.labels, (0, 1), 'constant', 399)

        self.train_size = train_size
        self.max_len = max_len
        self.canvas_shape = canvas_shape
        self.batch_size = batch_size

        with open("terminals.txt", "r") as file:
            self.unique_draw = file.readlines()
        for index, e in enumerate(self.unique_draw):
            self.unique_draw[index] = e[0:-1]

        self.parser = ParseModelOutput(self.unique_draw, self.max_len // 2 + 1,
                                       self.max_len, canvas_shape)
        self.expressions = self.parser.labels2exps(self.labels,
                                                   self.labels.shape[1])
        # Remove the stop symbol and later part of the expression
        for index, exp in enumerate(self.expressions):
            self.expressions[index] = exp.split("$")[0]
        self.correct_programs = []

    def get_train_data(self):
        while True:
            # # full shuffle, only effective if train/test size smaller than inferred programs
            # ids = np.arange(len(self.expressions))
            # np.random.shuffle(ids)
            # self.expressions = [self.expressions[index] for index in ids]
            # self.labels = self.labels[ids]

            self.correct_programs = []
            ids = np.arange(self.train_size)
            np.random.shuffle(ids)
            for i in range(0, self.train_size, self.batch_size):
                stacks = []
                batch_exp = [
                    self.expressions[index]
                    for index in ids[i:i + self.batch_size]
                ]
                batch_labels = self.labels[ids[i:i + self.batch_size]]
                if self.self_training:
                    batch_images = self.images[ids[i:i + self.batch_size]]

                for index, exp in enumerate(batch_exp):
                    program = self.parser.Parser.parse(exp)
                    # Check the validity of the expressions
                    if validity(program, len(program), len(program) - 1):
                        self.correct_programs.append(index)
                    else:
                        # stack = np.zeros(
                        #     (self.max_len + 1, self.max_len // 2 + 1, self.canvas_shape[0],
                        #      self.canvas_shape[1]))
                        stack = np.zeros((64, 64))
                        stacks.append(stack)
                        continue

                    if not self.self_training:
                        self.parser.sim.generate_stack(program)
                        stack = self.parser.sim.stack_t
                        stack = np.stack(stack, axis=0)
                        # pad if the program was shorter than the max_len since csgnet can only train on fixed sizes
                        stack = np.pad(
                            stack, (((self.max_len + 1) - stack.shape[0], 0),
                                    (0, 0), (0, 0), (0, 0)))
                        stack = stack[-1, 0, :, :]
                        stacks.append(stack)

                if not self.self_training:
                    stacks = np.stack(stacks, 0).astype(dtype=np.float32)
                else:
                    stacks = batch_images

                # # data needs to be (program_len + 1, dataset_size, stack_length, canvas_height, canvas_width)
                # batch_data = torch.from_numpy(stacks).permute(1, 0, 2, 3, 4)
                batch_data = torch.from_numpy(stacks)
                yield (batch_data, batch_labels)
Пример #15
0
    13: [370000, 1000 * proportion]
}

generator = MixedGenerateData(data_labels_paths={
    3: data_labels_paths[3],
    5: data_labels_paths[5]
},
                              batch_size=config.batch_size,
                              canvas_shape=config.canvas_shape)

assert len(generator.unique_draw) == 400
data_labels_paths = {3: data_labels_paths[3]}
dataset_sizes = {3: dataset_sizes[3]}

max_len = max(data_labels_paths.keys())
parser = ParseModelOutput(generator.unique_draw, max_len // 2 + 1, max_len,
                          config.canvas_shape)

# total size according to the test batch size.
total_size = 0
config.test_size = sum(dataset_sizes[k][1] for k in dataset_sizes.keys())
for k in dataset_sizes.keys():
    test_batch_size = config.batch_size
    total_size += (dataset_sizes[k][1] // test_batch_size) * test_batch_size

over_all_CD = {}
Pred_Prog = []
Targ_Prog = []
metrics = {}
programs_tar = {}
programs_pred = {}
Пример #16
0
import random
import numpy as np
from src.Models.models import ParseModelOutputGenData, validity, ParseModelOutput
from src.Generator.parser import Parser
import deepdish as dd
from vis_voxels import vis_voxels
from copy import deepcopy

max_ops = 10
max_len = (max_ops * 2) + 1
parser = ParseModelOutput(max_len // 2 + 1, max_len, [64, 64, 64])
with open("draws_cuboids.txt", "r") as file:
    unique_draws = file.readlines()
unique_draws = [x.strip() for x in unique_draws]
other_parser = Parser()
ops = ["+", "-", "*"]


def get_voxels(exp):
    program = other_parser.parse(exp)
    parser.sim.generate_stack(program, start_scratch=False)
    stack = parser.sim.stack_t
    stack = np.stack(stack, axis=0)[-1, 0, :, :]
    return stack


def clear_stack():
    parser.sim.stack_t = []
    parser.sim.stack.clear()
    parser.sim.stack_t.append(parser.sim.stack.get_items())
Пример #17
0
def optimize_expression(query_exp: string,
                        target_image: np.ndarray,
                        metric="iou",
                        stack_size=7,
                        steps=15,
                        max_iter=100):
    """
    A helper function for visually guided search. This takes the target image (or test 
    image) and predicted expression from CSGNet and returns the final chamfer distance 
    and optmized program with least chamfer distance possible.
    :param query_exp: program expression 
    :param target_image: numpy array of test image
    :param metric: metric to minimize while running the optimizer, "chamfer"
    :param stack_size: max stack size of the program required
    :param steps: max number of time step present in any program
    :param max_iter: max iteration for which to run the program.
    :return: 
    """
    # a parser to parse the input expressions.
    parser = ParseModelOutput(canvas_shape=[64, 64],
                              stack_size=stack_size,
                              unique_draws=None,
                              steps=steps)

    program = parser.Parser.parse(query_exp)
    if not validity(program, len(program), len(program) - 1):
        return query_exp, 16

    x = []
    for p in program:
        if p["value"] in ["c", "s", "t"]:
            x += [int(t) for t in p["param"]]

    optimizer = Optimize(query_exp,
                         metric=metric,
                         stack_size=stack_size,
                         steps=steps)
    optimizer.get_target_image(target_image)

    if max_iter == None:
        # None will stop when tolerance hits, not based on maximum iterations
        res = minimize(optimizer.objective,
                       x,
                       method="Powell",
                       tol=0.0001,
                       options={
                           "disp": False,
                           'return_all': False
                       })
    else:
        # This will stop when max_iter hits
        res = minimize(optimizer.objective,
                       x,
                       method="Powell",
                       tol=0.0001,
                       options={
                           "disp": False,
                           'return_all': False,
                           "maxiter": max_iter
                       })

    final_value = res.fun
    res = res.x.astype(np.int)
    for i in range(2, res.shape[0], 3):
        res[i] = np.clip(res[i], 8, 32)
    res = np.clip(res, 8, 56)
    predicted_exp = optimizer.make_expression(res)
    return predicted_exp, final_value
Пример #18
0
        print(f"acc: {acc}")

    mean_train_loss = train_loss / (config.train_size // (config.batch_size))
    print(f"epoch {epoch} mean train loss: {mean_train_loss.cpu().numpy()}")
    imitate_net.eval()
    loss = Variable(torch.zeros(1)).cuda()
    acc = 0
    metrics = {"cos": 0, "iou": 0, "cd": 0}
    IOU = 0
    COS = 0
    CD = 0
    beam_CD = 0
    correct_programs = 0
    pred_programs = 0
    for batch_idx in range(config.test_size // (config.batch_size)):
        parser = ParseModelOutput(generator.unique_draw, max_len // 2 + 1,
                                  max_len, config.canvas_shape)
        for k in dataset_sizes.keys():
            with torch.no_grad():
                data_, labels = next(test_gen_objs[k])
                one_hot_labels = prepare_input_op(labels,
                                                  len(generator.unique_draw))
                one_hot_labels = Variable(
                    torch.from_numpy(one_hot_labels)).cuda()
                data = Variable(torch.from_numpy(data_)).cuda()
                labels = Variable(torch.from_numpy(labels)).cuda()
                #test_outputs = imitate_net([data, one_hot_labels, k])
                #loss += (losses_joint(test_outputs, labels, time_steps=k + 1) /
                #         (k + 1)) / types_prog
                test_output = imitate_net.test([data, one_hot_labels, max_len])
                #acc += float((torch.argmax(torch.stack(test_output), dim=2)[:k].permute(1, 0) == labels[:, :-1]).float().sum()) \
                #        / (len(labels) * (k+1)) / types_prog / (config.test_size // config.batch_size)
Пример #19
0
class Optimize:
    """
    Post processing visually guided search using Powell optimizer.
    """
    def __init__(self, query_expression, metric="iou", stack_size=7, steps=15):
        """
        Post processing visually guided search.
        :param query_expression: expression to be optimized
        :param metric: metric to be minimized, like chamfer
        :param stack_size: max stack size required in any program
        :param steps: max tim step of any program
        """
        self.parser = ParseModelOutput(canvas_shape=[64, 64],
                                       stack_size=stack_size,
                                       unique_draws=None,
                                       steps=steps)
        self.query_expression = query_expression
        self.get_graph_structure(query_expression)
        self.metric = metric
        self.errors = []

    def get_target_image(self, image: np.ndarray):
        """
        Gets the target image.
        :param image: target image
        :return: 
        """
        self.target_image = image

    def get_graph_structure(self, expression):
        """
        returns the nodes (terminals) of the program
        :param expression: input query expression
        :return: 
        """
        program = self.parser.Parser.parse(expression)
        self.graph_str = []
        for p in program:
            self.graph_str.append(p["value"])

    def make_expression(self, x: np.ndarray):
        expression = ""
        index = 0
        for e in self.graph_str:
            if e in ["c", "s", "t"]:
                expression += e + "({},{},{})".format(x[index], x[index + 1],
                                                      x[index + 2])
                index += 3
            else:
                expression += e
        return expression

    def objective(self, x: np.ndarray):
        """
        Objective to minimize.
        :param x: input program parameters in numpy array format
        :return: 
        """
        x = x.astype(np.int)
        x = np.clip(x, 8, 56)

        query_exp = self.make_expression(x)
        query_image = self.parser.expression2stack([query_exp])[-1, 0, 0, :, :]
        if self.metric == "iou":
            error = -np.sum(np.logical_and(
                self.target_image, query_image)) / np.sum(
                    np.logical_or(self.target_image, query_image))
        elif self.metric == "chamfer":
            error = chamfer(np.expand_dims(self.target_image, 0),
                            np.expand_dims(query_image, 0))
        return error
Пример #20
0
            l.cpu().numpy(),
            epoch * (config.train_size // (config.batch_size * num_accums)) +
            batch_idx)
    mean_train_loss = train_loss / (config.train_size //
                                    (config.batch_size * num_accums))
    log_value('train_loss', mean_train_loss.cpu().numpy(), epoch)
    del data, loss, loss_sum, train_loss, outputs

    test_losses = 0
    imitate_net.eval()
    test_reward = 0
    for batch_idx in range(config.test_size // config.batch_size):
        for k in data_labels_paths.keys():
            parser = ParseModelOutput(generator.unique_draw,
                                      stack_size=(k + 1) // 2 + 1,
                                      steps=k,
                                      canvas_shape=[64, 64, 64],
                                      primitives=generator.primitives)
            data_, labels = next(test_gen_objs[k])

            one_hot_labels = prepare_input_op(labels,
                                              len(generator.unique_draw))
            one_hot_labels = Variable(torch.from_numpy(one_hot_labels)).cuda()
            data = Variable(torch.from_numpy(data_[:, :, 0:config.top_k +
                                                   1, :, :, :]),
                            volatile=True).cuda()
            data = data.permute(1, 0, 2, 3, 4, 5)
            labels = Variable(torch.from_numpy(labels)).cuda()

            test_output = imitate_net([data, one_hot_labels, k])
Пример #21
0
    # if using multi gpu training, train and test batch size should be multiple of
    # number of GPU edvices.
    test_batch_size = config.batch_size
    test_gen_objs[k] = generator.get_test_data(
        test_batch_size,
        k,
        num_train_images=dataset_sizes[k][0],
        num_test_images=dataset_sizes[k][1],
        if_primitives=True,
        if_jitter=False)

Target_expressions = []
Predicted_expressions = []

parser = ParseModelOutput(generator.unique_draw,
                          max_len // 2 + 1,
                          max_len, [64, 64, 64],
                          primitives=generator.primitives)
imitate_net.eval()
Rs = 0
t1 = time.time()
IOU = {}
total_iou = 0
for k in data_labels_paths.keys():
    Rs = 0.0
    for batch_idx in range(dataset_sizes[k][1] // config.batch_size):
        print(batch_idx)
        data_, labels = next(test_gen_objs[k])
        data_ = data_[:, :, 0:config.top_k + 1, :, :, :]
        one_hot_labels = prepare_input_op(labels, len(generator.unique_draw))
        one_hot_labels = Variable(torch.from_numpy(one_hot_labels),
                                  volatile=True).cuda()