Пример #1
0
 def standardizeGyro(self, isTrain):
     print('standardizing gyro')
     normPath = '../Norms/' + branchName() + '_' + self.dsName + '_' + self.subType
     if isTrain:
         gyroMean = np.mean(self.dw_gyro, axis=0)
         gyroStd = np.std(self.dw_gyro, axis=0)
         np.savetxt(normPath + 'gyroMean.txt', gyroMean)
         np.savetxt(normPath + 'gyroStd.txt', gyroStd)
     else:
         gyroMean = np.loadtxt(normPath + 'gyroMean.txt')
         gyroStd = np.loadtxt(normPath + 'gyroStd.txt')
     self.gyro_standard = self.dw_gyro - gyroMean
     self.gyro_standard = np.divide(self.gyro_standard, gyroStd).astype(np.float32)
 def standardize(self, isTrain):
     print('standardizing acc')
     normPath = 'Norms/' + branchName() + '_' + self.dsName + '_' + self.subType
     if isTrain:
         accMean = np.mean(self.accdt_gnd, axis=0)
         accStd = np.std(self.accdt_gnd, axis=0)
         np.savetxt(normPath + '_img_accMean.txt', accMean)
         np.savetxt(normPath + '_img_accStd.txt', accStd)
     else:
         accMean = np.loadtxt(normPath + '_img_accMean.txt')
         accStd = np.loadtxt(normPath + '_img_accStd.txt')
     self.acc_gnd_standard = self.accdt_gnd - accMean
     self.acc_gnd_standard = np.divide(self.acc_gnd_standard, accStd).astype(np.float32)
Пример #3
0
    def standardizeImgs(self, isTrain):
        print('preparing to standardize imgs')
        mean = np.mean(self.imgs, axis=(0, 2, 3))
        std = np.std(self.imgs, axis=(0, 2, 3))
        normPath = '../Norms/' + branchName() + '_' + self.dsName + '_' + self.subType
        if isTrain:
            np.savetxt(normPath + '_img_mean.txt', mean)
            np.savetxt(normPath + '_img_std.txt', std)
        else:
            mean = np.loadtxt(normPath + '_img_mean.txt')
            std = np.loadtxt(normPath + '_img_std.txt')
            if self.dsName == 'euroc':
                mean = np.reshape(mean, (1,1))
                std = np.reshape(std, (1,1))

        # standardize imgs
        print('standardizing imgs')
        mean = mean.astype(np.float32)
        std = std.astype(np.float32)
        for i in range(0, self.imgs.shape[1]):
            self.imgs[:, i, :, :] = (self.imgs[:, i, :, :] - mean[i])/std[i]
        print('done standardizing imgs')