def testRolloutWithHeuristic(self, max_rollout_step, init_state, gt_sumValue): max_iteration = 1000 target_state = 6 isTerminal = Terminal(target_state) catch_reward = 1 step_penalty = 0 reward_func = RewardFunction(step_penalty, catch_reward, isTerminal) rolloutHeuristic = lambda state: 2 rollout_policy = lambda state: np.random.choice(self.action_space) leaf_node = Node(id={1: init_state}, numVisited=1, sumValue=0, actionPrior=self.default_actionPrior, isExpanded=True) rollout = RollOut(rollout_policy, max_rollout_step, self.transition, reward_func, isTerminal, rolloutHeuristic) stored_reward = [] for curr_iter in range(max_iteration): stored_reward.append(rollout(leaf_node)) calc_sumValue = np.mean(stored_reward) self.assertAlmostEqual(gt_sumValue, calc_sumValue, places=1)
def mctsPolicy(): lowerBound = 0 gridSize = 10 upperBound = [gridSize - 1, gridSize - 1] maxRunningSteps = 50 actionSpace = [(-1, 0), (1, 0), (0, 1), (0, -1)] numActionSpace = len(actionSpace) sheepSpeedRatio = 1 sheepActionSpace = list(map(tuple, np.array(actionSpace) * sheepSpeedRatio)) numOfAgent = 5 # 1 hunter, 1 stag with high value, 3 rabbits with low value hunterId = [0] targetIds = [1, 2, 3, 4] stagId = [1] rabbitId = [2, 3, 4] positionIndex = [0, 1] getHunterPos = GetAgentPosFromState(hunterId, positionIndex) getTargetsPos = GetAgentPosFromState(targetIds, positionIndex) stayWithinBoundary = env.StayWithinBoundary(upperBound, lowerBound) isTerminal = env.IsTerminal(getHunterPos, getTargetsPos) transitionFunction = env.Transition(stayWithinBoundary) reset = env.Reset(upperBound, lowerBound, numOfAgent) # stagPolicy = RandomPolicy(sheepActionSpace) stagPolicy = stationaryAgentPolicy rabbitPolicies = [stationaryAgentPolicy] * len(rabbitId) cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) getActionPrior = lambda state: { action: 1 / len(actionSpace) for action in actionSpace } def wolfTransit(state, action): return transitionFunction( state, [action, maxFromDistribution(stagPolicy(state))] + [ maxFromDistribution(rabbitPolicy(state)) for rabbitPolicy in rabbitPolicies ]) stepPenalty = -1 / maxRunningSteps catchBonus = 1 highRewardRatio = 10 rewardFunction = reward.RewardFunction(highRewardRatio, stepPenalty, catchBonus, isTerminal) initializeChildren = InitializeChildren(actionSpace, wolfTransit, getActionPrior) expand = Expand(isTerminal, initializeChildren) def rolloutPolicy(state): return actionSpace[np.random.choice(range(numActionSpace))] rolloutHeuristicWeight = 0 rolloutHeuristic = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getHunterPos, getTargetsPos) # rolloutHeuristic = lambda state: 0 maxRolloutSteps = 20 rollout = RollOut(rolloutPolicy, maxRolloutSteps, wolfTransit, rewardFunction, isTerminal, rolloutHeuristic) numSimulations = 600 wolfPolicy = MCTS(numSimulations, selectChild, expand, rollout, backup, establishSoftmaxActionDist) # All agents' policies policy = lambda state: [ wolfPolicy(state), stagPolicy(state) ] + [rabbitPolicy(state) for rabbitPolicy in rabbitPolicies] numOfAgent = 5 gridSize = 15 maxRunningSteps = 50 screenWidth = 600 screenHeight = 600 fullScreen = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() # pg.mouse.set_visible(False) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] distractorColor = [255, 255, 0] targetColor = [221, 160, 221] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) chooseAction = [maxFromDistribution] * numOfAgent renderOn = True sampleTrajectory = SampleTrajectory(maxRunningSteps, transitionFunction, isTerminal, reset, chooseAction, renderOn, drawNewState) startTime = time.time() numOfEpisodes = 10 trajectories = [sampleTrajectory(policy) for i in range(numOfEpisodes)] finshedTime = time.time() - startTime print('lenght:', len(trajectories[0])) print('time:', finshedTime)
def main(): DEBUG = 0 renderOn = 0 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 5 endSampleIndex = 7 agentId = 1 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) agentId = int(parametersForTrajectoryPath['agentId']) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', 'NoPhysics2wolves1sheep', 'trainWolvesTwoCenterControlAction88', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 250 killzoneRadius = 150 fixedParameters = { 'agentId': agentId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius } generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath( parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): numOfAgent = 3 xBoundary = [0, 600] yBoundary = [0, 600] resetState = Reset(xBoundary, yBoundary, numOfAgent) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) interpolateOneFrame = InterpolateOneFrame( stayInBoundaryByReflectVelocity) chooseInterpolatedNextState = lambda interpolatedStates: interpolatedStates[ -1] sheepId = 0 wolvesId = 1 centerControlIndexList = [wolvesId] unpackCenterControlAction = UnpackCenterControlAction( centerControlIndexList) numFramesToInterpolate = 0 transit = TransitWithInterpolation(numFramesToInterpolate, interpolateOneFrame, chooseInterpolatedNextState, unpackCenterControlAction) # NNGuidedMCTS init cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] preyPowerRatio = 10 sheepActionSpace = list( map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 8 wolfActionOneSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list( product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 2 * numOfAgent numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) # load save dir NNModelSaveExtension = '' sheepNNModelSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', 'NoPhysics2wolves1sheep', 'trainSheepWithTwoHeatSeekingWolves', 'trainedResNNModels') sheepNNModelFixedParameters = { 'agentId': 0, 'maxRunningSteps': 50, 'numSimulations': 110, 'miniBatchSize': 256, 'learningRate': 0.0001, } getSheepNNModelSavePath = GetSavePath(sheepNNModelSaveDirectory, NNModelSaveExtension, sheepNNModelFixedParameters) depth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepNNModel = generateSheepModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepTrainedModelPath = getSheepNNModelSavePath({ 'trainSteps': 50000, 'depth': depth }) sheepTrainedModel = restoreVariables(initSheepNNModel, sheepTrainedModelPath) sheepPolicy = ApproximatePolicy(sheepTrainedModel, sheepActionSpace) wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) speed = 120 #sheepPolicy = HeatSeekingContinuesDeterministicPolicy(getWolfOneXPos, getSheepXPos, speed) # MCTS cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: { action: 1 / len(wolvesActionSpace) for action in wolvesActionSpace } # load chase nn policy chooseActionInMCTS = sampleFromDistribution def wolvesTransit(state, action): return transit(state, [chooseActionInMCTS(sheepPolicy(state)), action]) # reward function wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) getWolfTwoXPos = GetAgentPosFromState(wolfTwoId, xPosIndex) isCollidedOne = IsTerminal(getWolfOneXPos, getSheepXPos, killzoneRadius) isCollidedTwo = IsTerminal(getWolfTwoXPos, getSheepXPos, killzoneRadius) calCollisionTimes = lambda state: np.sum([ isCollidedOne(state), isCollidedTwo(state) ]) # collisionTimeByAddingCollisionInAllWolves #calCollisionTimes = lambda state: np.max([isCollidedOne(state), isCollidedTwo(state)]) # collisionTimeByBooleanCollisionForAnyWolf calTerminationSignals = calCollisionTimes chooseInterpolatedStateByEarlyTermination = ChooseInterpolatedStateByEarlyTermination( calTerminationSignals) numFramesToInterpolateInReward = 3 interpolateStateInReward = TransitWithInterpolation( numFramesToInterpolateInReward, interpolateOneFrame, chooseInterpolatedStateByEarlyTermination, unpackCenterControlAction) aliveBonus = -1 / maxRunningSteps * 10 deathPenalty = 1 rewardFunction = RewardFunctionCompeteWithStateInterpolation( aliveBonus, deathPenalty, calCollisionTimes, interpolateStateInReward) # initialize children; expand initializeChildren = InitializeChildren(wolvesActionSpace, wolvesTransit, getActionPrior) isTerminal = lambda state: False expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy(state): return [ sampleFromDistribution(sheepPolicy(state)), wolvesActionSpace[np.random.choice( range(numWolvesActionSpace))] ] # rollout #rolloutHeuristicWeight = 0 #minDistance = 400 #rolloutHeuristic1 = HeuristicDistanceToTarget( # rolloutHeuristicWeight, getWolfOneXPos, getSheepXPos, minDistance) #rolloutHeuristic2 = HeuristicDistanceToTarget( # rolloutHeuristicWeight, getWolfTwoXPos, getSheepXPos, minDistance) #rolloutHeuristic = lambda state: (rolloutHeuristic1(state) + rolloutHeuristic2(state)) / 2 rolloutHeuristic = lambda state: 0 maxRolloutSteps = 15 rollout = RollOut(rolloutPolicy, maxRolloutSteps, transit, rewardFunction, isTerminal, rolloutHeuristic) wolfPolicy = MCTS(numSimulations, selectChild, expand, rollout, backup, establishSoftmaxActionDist) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] chooseActionList = [maxFromDistribution, maxFromDistribution] def sampleAction(state): actionDists = [sheepPolicy(state), wolfPolicy(state)] action = [ chooseAction(actionDist) for actionDist, chooseAction in zip( actionDists, chooseActionList) ] return action render = None if renderOn: import pygame as pg from pygame.color import THECOLORS screenColor = THECOLORS['black'] circleColorList = [ THECOLORS['green'], THECOLORS['yellow'], THECOLORS['red'] ] circleSize = 10 saveImage = False saveImageDir = os.path.join(dirName, '..', '..', '..', '..', 'data', 'demoImg') if not os.path.exists(saveImageDir): os.makedirs(saveImageDir) screen = pg.display.set_mode([max(xBoundary), max(yBoundary)]) render = Render(numOfAgent, xPosIndex, screen, screenColor, circleColorList, circleSize, saveImage, saveImageDir) forwardOneStep = ForwardOneStep(transit, rewardFunction) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, isTerminal, resetState, forwardOneStep, render, renderOn) trajectories = [ sampleTrajectory(sampleAction) for sampleIndex in range(startSampleIndex, endSampleIndex) ] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath)
def main(): startTime = time.time() DEBUG = 1 renderOn = 1 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 5 endSampleIndex = 8 agentId = 1 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) agentId = int(parametersForTrajectoryPath['agentId']) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', 'MADDPG2wolves1sheep', 'trainWolvesTwoCenterControlAction', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 250 fixedParameters = { 'agentId': agentId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations } generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath( parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): # env MDP sheepsID = [0] wolvesID = [1, 2] blocksID = [] numSheeps = len(sheepsID) numWolves = len(wolvesID) numBlocks = len(blocksID) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks sheepSize = 0.05 wolfSize = 0.075 blockSize = 0.2 sheepMaxSpeed = 1.3 * 1 wolfMaxSpeed = 1.0 * 1 blockMaxSpeed = None entitiesSizeList = [sheepSize] * numSheeps + [wolfSize] * numWolves + [ blockSize ] * numBlocks entityMaxSpeedList = [sheepMaxSpeed] * numSheeps + [ wolfMaxSpeed ] * numWolves + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities centralControlId = 1 centerControlIndexList = [centralControlId] reshapeAction = UnpackCenterControlAction(centerControlIndexList) getCollisionForce = GetCollisionForce() applyActionForce = ApplyActionForce(wolvesID, sheepsID, entitiesMovableList) applyEnvironForce = ApplyEnvironForce(numEntities, entitiesMovableList, entitiesSizeList, getCollisionForce, getPosFromAgentState) integrateState = IntegrateState(numEntities, entitiesMovableList, massList, entityMaxSpeedList, getVelFromAgentState, getPosFromAgentState) interpolateState = TransitMultiAgentChasing(numEntities, reshapeAction, applyActionForce, applyEnvironForce, integrateState) numFramesToInterpolate = 1 def transit(state, action): for frameIndex in range(numFramesToInterpolate): nextState = interpolateState(state, action) action = np.array([(0, 0)] * numAgents) state = nextState return nextState isTerminal = lambda state: False isCollision = IsCollision(getPosFromAgentState) collisonRewardWolf = 1 punishForOutOfBound = PunishForOutOfBound() rewardWolf = RewardCentralControlPunishBond( wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardWolf) collisonRewardSheep = -1 rewardSheep = RewardCentralControlPunishBond( sheepsID, wolvesID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardSheep) resetState = ResetMultiAgentChasing(numAgents, numBlocks) observeOneAgent = lambda agentID: Observe( agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [ observeOneAgent(agentID)(state) for agentID in range(numAgents) ] # policy actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 0.5 sheepActionSpace = list( map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 0.5 wolfActionOneSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list( product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 4 * numEntities numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) sheepPolicy = lambda state: {(0, 0): 1} # MCTS cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: { action: 1 / len(wolvesActionSpace) for action in wolvesActionSpace } # load chase nn policy chooseActionInMCTS = sampleFromDistribution def wolvesTransit(state, action): return transit(state, [chooseActionInMCTS(sheepPolicy(state)), action]) # initialize children; expand initializeChildren = InitializeChildren(wolvesActionSpace, wolvesTransit, getActionPrior) isTerminal = lambda state: False expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy(state): return [ sampleFromDistribution(sheepPolicy(state)), wolvesActionSpace[np.random.choice( range(numWolvesActionSpace))] ] rolloutHeuristic = lambda state: 0 maxRolloutSteps = 15 rollout = RollOut(rolloutPolicy, maxRolloutSteps, transit, rewardWolf, isTerminal, rolloutHeuristic) wolfPolicy = MCTS(numSimulations, selectChild, expand, rollout, backup, establishSoftmaxActionDist) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] chooseActionList = [maxFromDistribution, maxFromDistribution] def sampleAction(state): actionDists = [sheepPolicy(state), wolfPolicy(state)] action = [ chooseAction(actionDist) for actionDist, chooseAction in zip( actionDists, chooseActionList) ] return action render = None forwardOneStep = ForwardOneStep(transit, rewardWolf) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, isTerminal, resetState, forwardOneStep, render, renderOn) trajectories = [ sampleTrajectory(sampleAction) for sampleIndex in range(startSampleIndex, endSampleIndex) ] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath) endTime = time.time()
def main(): DEBUG = 0 renderOn = 0 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 0 endSampleIndex = 10 agentId = 1 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) agentId = int(parametersForTrajectoryPath['agentId']) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', '2wolves1sheep', 'trainWolvesTwoCenterControlMultiTrees', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 500 killzoneRadius = 50 fixedParameters = { 'agentId': agentId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius } generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath( parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): numOfAgent = 3 sheepId = 0 wolvesId = 1 wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] xBoundary = [0, 600] yBoundary = [0, 600] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) getWolfTwoXPos = GetAgentPosFromState(wolfTwoId, xPosIndex) reset = Reset(xBoundary, yBoundary, numOfAgent) isTerminalOne = IsTerminal(getWolfOneXPos, getSheepXPos, killzoneRadius) isTerminalTwo = IsTerminal(getWolfTwoXPos, getSheepXPos, killzoneRadius) isTerminal = lambda state: isTerminalOne(state) or isTerminalTwo(state) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) centerControlIndexList = [wolvesId] unpackCenterControlAction = UnpackCenterControlAction( centerControlIndexList) transitionFunction = TransiteForNoPhysicsWithCenterControlAction( stayInBoundaryByReflectVelocity) numFramesToInterpolate = 3 transit = TransitWithInterpolateStateWithCenterControlAction( numFramesToInterpolate, transitionFunction, isTerminal, unpackCenterControlAction) # NNGuidedMCTS init cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = actionSpace # wolfActionSpace = [(10, 0), (0, 10), (-10, 0), (0, -10), (0, 0)] preyPowerRatio = 12 sheepActionSpace = list( map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 8 wolfActionOneSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list( product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 2 * numOfAgent numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) # load save dir NNModelSaveExtension = '' sheepNNModelSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', '2wolves1sheep', 'trainSheepWithTwoHeatSeekingWolves', 'trainedResNNModels') sheepNNModelFixedParameters = { 'agentId': 0, 'maxRunningSteps': 50, 'numSimulations': 110, 'miniBatchSize': 256, 'learningRate': 0.0001, } getSheepNNModelSavePath = GetSavePath(sheepNNModelSaveDirectory, NNModelSaveExtension, sheepNNModelFixedParameters) depth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepNNModel = generateSheepModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepTrainedModelPath = getSheepNNModelSavePath({ 'trainSteps': 50000, 'depth': depth }) sheepTrainedModel = restoreVariables(initSheepNNModel, sheepTrainedModelPath) sheepPolicy = ApproximatePolicy(sheepTrainedModel, sheepActionSpace) # MCTS cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: { action: 1 / len(wolvesActionSpace) for action in wolvesActionSpace } # load chase nn policy temperatureInMCTS = 1 chooseActionInMCTS = SampleAction(temperatureInMCTS) def wolvesTransit(state, action): return transit(state, [chooseActionInMCTS(sheepPolicy(state)), action]) # reward function aliveBonus = -1 / maxRunningSteps deathPenalty = 1 rewardFunction = reward.RewardFunctionCompete(aliveBonus, deathPenalty, isTerminal) # initialize children; expand initializeChildren = InitializeChildren(wolvesActionSpace, wolvesTransit, getActionPrior) expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy(state): return wolvesActionSpace[np.random.choice( range(numWolvesActionSpace))] # rollout rolloutHeuristicWeight = 0 minDistance = 400 rolloutHeuristic1 = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getWolfOneXPos, getSheepXPos, minDistance) rolloutHeuristic2 = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getWolfTwoXPos, getSheepXPos, minDistance) rolloutHeuristic = lambda state: (rolloutHeuristic1(state) + rolloutHeuristic2(state)) / 2 maxRolloutSteps = 15 rollout = RollOut(rolloutPolicy, maxRolloutSteps, wolvesTransit, rewardFunction, isTerminal, rolloutHeuristic) numTree = 4 numSimulationsPerTree = int(numSimulations / numTree) wolfPolicy = StochasticMCTS( numTree, numSimulationsPerTree, selectChild, expand, rollout, backup, establishSoftmaxActionDistFromMultipleTrees) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] chooseActionList = [chooseGreedyAction, chooseGreedyAction] render = None if renderOn: import pygame as pg from pygame.color import THECOLORS screenColor = THECOLORS['black'] circleColorList = [ THECOLORS['green'], THECOLORS['red'], THECOLORS['red'] ] circleSize = 10 saveImage = False saveImageDir = os.path.join(dirName, '..', '..', '..', '..', 'data', 'demoImg') if not os.path.exists(saveImageDir): os.makedirs(saveImageDir) screen = pg.display.set_mode([xBoundary[1], yBoundary[1]]) render = Render(numOfAgent, xPosIndex, screen, screenColor, circleColorList, circleSize, saveImage, saveImageDir) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, transit, isTerminal, reset, chooseActionList, render, renderOn) trajectories = [ sampleTrajectory(policy) for sampleIndex in range(startSampleIndex, endSampleIndex) ] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath)