Пример #1
0
class DemoTest(unittest.TestCase):
    def setUp(self):
        self.host_url = r'http://127.0.0.1:12356'
        self.comm = Common(self.host_url)

    @unittest.skip("demonstrating skipping")
    def test_nothing(self):
        self.fail("shouldn't happen")

    def test_index(self):
        uri_index = '/'
        respanse_index_test = self.comm.get(uri_index)
        self.assertEqual(
            respanse_index_test.text,
            'please input your username(your english name) and password(your english name)'
        )

    def test_login(self):
        uri = r'/login'
        username = '******'
        password = '******'

        payload = 'username='******'&password='******'please select One Equipment:\n10001:Knife\n10002:Big Sword\n10003:KuiHuaBaoDian'
        )

    def tearDown(self):
        pass
Пример #2
0
class SampleTest(unittest.TestCase):
    def setUp(self):
        self.host_url = r'http://127.0.0.1:12356'
        self.comm = Common(self.host_url)

    def test_selectEq(self):
        uri_selectEq = r'/selectEq'
        equipmentid = '10003'
        payload_selectEq = 'equipmentid=' + equipmentid
        res_selectEq = self.comm.post(uri_selectEq, payload_selectEq)
        self.assertEqual(
            res_selectEq.text,
            '{"equipmentid": "10003", "Message": "your pick up equipmentid:10003 please select your  enemyid:\\n20001:Terran\\n20002:ORC\\n20003:Undead"}'
        )

    def test_kill(self):
        equipmentid = '10003'
        enmyid = '20001'
        uri_kill = '/kill'
        payload_enmyid = 'enmyid=' + enmyid + '&equipmentid=' + equipmentid
        res_enmyid = self.comm.post(uri_kill, payload_enmyid)
        self.assertEqual(res_enmyid.text, 'Error 9904: Your kill yourself!!')

    def tearDown(self):
        pass
Пример #3
0
 def __init__(self):
     self.driver = WebDriver()
     self.driver.implicitly_wait(2)
     self.driver.get(Config.main_page)
     self.common = Common(self)
     self.stf = Stf(self)
     self.common.get_seed()
     self.common.write_seed_to_file()
Пример #4
0
class Application:
    def __init__(self):
        self.driver = WebDriver()
        self.driver.implicitly_wait(2)
        self.driver.get(Config.main_page)
        self.common = Common(self)
        self.stf = Stf(self)
        self.common.get_seed()
        self.common.write_seed_to_file()

    def destroy(self):
        self.driver.close()
        self.driver.quit()
Пример #5
0
def content_cost(input, target):
    # First normalize both the input and target (preprocess for VGG16)
    input_norm = normalize_batch(input)
    target_norm = normalize_batch(target)

    input_layers = Common.forward_vgg(input_norm, False)
    target_layers = Common.forward_vgg(target_norm, False)

    accumulated_loss = 0
    for layer in range(len(input_layers)):
        accumulated_loss = accumulated_loss + torch.mean(
            torch.square(input_layers[layer] - target_layers[layer]))

    return accumulated_loss
Пример #6
0
def test_common():
    """this is not a real test
    It's just for see print statements.
    Try exchange del and print statement positions
    """
    obj = Common()
    del obj
    print('hi')
Пример #7
0
def style_cost(input, target):
    # First normalize both the input and target (preprocess for VGG16)
    input_norm = normalize_batch(input)
    target_norm = normalize_batch(target)

    input_layers = Common.forward_vgg(input_norm, True)
    target_layers = Common.forward_vgg(target_norm, True)

    # layer weights
    layer_weights = [0.3, 0.7, 0.7, 0.3]

    # The accumulated losses for the style
    accumulated_loss = 0
    for layer in range(len(input_layers)):
        accumulated_loss = accumulated_loss + layer_weights[layer] * \
                            torch.mean(torch.square(compute_gram(input_layers[layer]) -
                                                    compute_gram(target_layers[layer])))

    return accumulated_loss
Пример #8
0
def show_img(img):
    # Convert to tensor
    img = torch.from_numpy(img.reshape(1, 3, 256, 256)).float()

    # Put through network
    gen_img = Common.transformation_net(img)
    gen_img = gen_img.detach().numpy()

    # Clip the floats
    gen_img = np.clip(gen_img, 0, 255)

    # Convert to ints (for images)
    gen_img = gen_img.astype('uint8')
    gen_img = gen_img.reshape(3, 256, 256).transpose(1, 2, 0)

    # Show the image
    plt.imshow(gen_img)
    plt.show()
Пример #9
0
def training_show_img():
    # Get an image from the validation set
    img = load_training_batch(0, 10, 'val')[4]

    # Convert to tensor
    train_img = torch.from_numpy(img.reshape(1, 3, 256, 256)).float()

    # Put through network
    gen_img = Common.transformation_net(train_img)
    gen_img = gen_img.detach().numpy()

    # Clip the floats
    gen_img = np.clip(gen_img, 0, 255)

    # Convert to ints (for images)
    gen_img = gen_img.astype('uint8')
    gen_img = gen_img.reshape(3, 256, 256).transpose(1, 2, 0)

    # Show the image
    plt.imshow(gen_img)
    plt.show()
Пример #10
0
 def setUp(self):
     self.host_url = r'http://127.0.0.1:12356'
     self.comm = Common(self.host_url)
Пример #11
0
from src.common import Common

# 实例化Common
host_url = r'http://127.0.0.1:12356'
comm = Common(host_url)

# 访问首页
uri_index = '/'
res_index = comm.get(uri_index)
print('访问首页' + res_index.text)

# 存储战场的登录
uri = r'/login'
username = '******'
password = '******'

payload = 'username='******'&password='******'/selectEq'
equipmentid = '10003'
payload_selectEq = 'equipmentid=' + equipmentid
res_selectEq = comm.post(uri_selectEq, payload_selectEq)
print(u'存储战场的武器选择' + res_selectEq.text)

# 存储战场另一个武器选择
enmyid = '20001'
uri_kill = '/kill'
payload_enmyid = 'enmyid=' + enmyid + '&equipmentid=' + equipmentid
Пример #12
0
def test_str():
    obj = Common()
    assert str(obj) == 'Common'
Пример #13
0
def test_repr():
    obj = Common()
    assert repr(obj) == '<Common>'
Пример #14
0
        # The content batch is the same as the train batch, except train batch has noise added to it
        train_batch = load_training_batch(batch, Common.BATCH_SIZE, 'train')
        content_batch = np.copy(train_batch)

        # Add noise to the training batch
        train_batch = add_noise(train_batch)

        # Convert the batches to tensors
        train_batch = torch.from_numpy(train_batch).float()
        content_batch = torch.from_numpy(content_batch).float()

        # Zero the gradients
        opt.zero_grad()

        # Forward propagate
        gen_images = Common.transformation_net(train_batch)

        # Compute loss
        loss = total_cost(gen_images,
                          [content_batch, Common.STYLE_IMAGE_TENSOR])

        # Backprop
        loss.backward()

        # Clip the gradient to minimize chance of exploding gradients
        torch.nn.utils.clip_grad_norm_(Common.transformation_net.parameters(),
                                       1.0)

        # Apply gradients
        opt.step()
Пример #15
0
 def test_get_stock_codes_from_tse(self):
     stock_codes = Common.get_stock_codes_from_tse((2017, 9, 7))
     self.assertEqual(912, len(stock_codes))
Пример #16
0
    def test_is_in_future(self):
        tomorrow_obj = datetime.date.today() + datetime.timedelta(1)
        self.assertTrue(Common.is_in_future(tomorrow_obj))

        with self.assertRaises(TypeError):
            Common.is_in_future('abc')