# disp_interval = 5000 # log_interval = 250 pretrained_vgg16 = False fine_tune = False rand_seed = 64678 if rand_seed is not None: np.random.seed(rand_seed) torch.manual_seed(rand_seed) torch.cuda.manual_seed(rand_seed) net = CrowdCounter() network.weights_normal_init(net, dev=0.01) if pretrained_vgg16: vgg16_model = models.vgg16(pretrained=True) # vgg16_model.cuda() net.DA_Net.copy_params_from_vgg16(vgg16_model) net.to(device) Loss_list = [] for epoch in range(start_epoch, start_epoch + 2): train_loss = train_DA(epoch) Loss_list.append(train_loss) if epoch == 1: test_DA(epoch) # 记录train_loss train_loss_txt = open('train_loss.txt', 'w') for value in Loss_list: train_loss_txt.write(str(value)) train_loss_txt.write('\n') train_loss_txt.close()
f.write('MAE: %0.2f, MSE: %0.2f' % (mae,mse)) f.close() if __name__ == '__main__': torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False # data_path = './data/original/shanghaitech/part_B_final/test_data/images/' # gt_path = './data/original/shanghaitech/part_B_final/test_data/ground_truth_csv/' data_path = './data/original/shanghaitech/part_A_final/test_data/images/' gt_path = './data/original/shanghaitech/part_A_final/test_data/ground_truth_csv/' model_path = './Shanghai_A_Retrain_eps_1_5/saved_models//MCNN_Shanghai_A.h5' model = CrowdCounter() trained_model = os.path.join(model_path) network.load_net(trained_model, model) model.to(device) model.eval() data_loader = ImageDataLoader(data_path, gt_path, shuffle=False, gt_downsample=True, pre_load=True) eps_list = [0, 0.25, 0.5, 0.75, 1] print(model_path) epoch_robust_bound(data_loader, model, device, epsilon_try=0.25)