def train_models():

    # Load the data
    data = load_data(dataset="EMNIST_Letter_Uppercase", already_downloaded=True)

    # Get the number of input features
    n_rows, n_cols = np.shape(data["x_train"])[1:]
    n_features = n_rows * n_cols
    n_classes = np.unique(data["y_train"]).shape[0]

    # Print some info
    for key in data.keys():
        x = data[key]
        print(key, " : ", np.shape(x))

    unique, counts = np.unique(data["y_train"], return_counts=True)
    print("y_train class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(data["y_valid"], return_counts=True)
    print("y_valid class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(data["y_test"], return_counts=True)
    print("y_test class count: ", dict(zip(unique, counts)))

    # --------------------------------------------------------------------------------
    # TRAIN THE VARIATIONAL AUTOENCODER TO FIT THE UNIT FUNCTION

    # Create VAE
    vae = VariationalAutoEncoder(
        name="vae_emnist_letter_uppercase",
        keras_verbose=2,
        num_inputs=n_features,
        encoder_layers=[
            [512, "relu", 0.0, 0.1, True, "gaussian"],
            [256, "relu", 0.0, 0.1, True, "gaussian"],
            [128, "relu", 0.0, 0.1, True, "gaussian"]
        ],
        decoder_layers=[
            [128, "relu", 0.0, 0.1, True, "gaussian"],
            [256, "relu", 0.0, 0.1, True, "gaussian"],
            [512, "relu", 0.0, 0.1, True, "gaussian"]
        ],
        batch_size=128,
        learning_rate=0.001,
        stopping_patience=10,
        epochs=2000
    )

    # Train VAE
    vae.train(data["x_train_flat"], data["x_valid_flat"], load_model=True)

    # Evaluate VAE
    vae_results = vae.evaluate(data["x_test_flat"])

    # Generate new data
    x_gen_flat = vae.sample(30000)

    # Reshape to images for CCN
    x_gen = np.array([np.reshape(x_gen_flat[i], [n_rows, n_cols]) for i in range(len(x_gen_flat))])

    # --------------------------------------------------------------------------------
    # TRAIN THE MULTI-LAYER PERCEPTRON TO FIT THE MAPPING FUNCTION

    # Create MLP
    mlp = MultiLayerPerceptron(
        name="mlp_emnist_letter_uppercase",
        num_inputs=n_features,
        num_outputs=n_classes,
        keras_verbose=2,
        ff_layers=[
            [512, "relu", 0.0, 0.2, True, "gaussian"],
            [512, "relu", 0.0, 0.2, True, "gaussian"],
            [512, "relu", 0.0, 0.2, True, "gaussian"],
            [512, "relu", 0.0, 0.2, True, "gaussian"]
        ],
        epochs=400,
        batch_size=64,
        stopping_patience=10
    )

    # Train MLP
    mlp.train(data["x_train_flat"], data["y_train_one_hot"], data["x_valid_flat"], data["y_valid_one_hot"], load_model=True)

    # Evaluate MLP
    mlp_results = mlp.evaluate(data["x_test_flat"], data["y_test_one_hot"])

    # Get MLP labels
    # y_mlp_train = mlp_mnist.predict(data["x_train_flat"])
    # y_gen = mlp_mnist.predict(x_gen)
    #
    # x_both = join_data([data["x_train_flat"], x_gen])
    # y_both = join_data([y_mlp_train, y_gen])
    # x_both, y_both = shuffle(x_both, y_both)

    # --------------------------------------------------------------------------------
    # TRAIN A CNN TO FIT THE MAPPING FUNCTION

    # Create CNN
    cnn = ConvDNN(
        name="cnn_emnist_letter_uppercase",
        img_rows=n_rows,
        img_cols=n_cols,
        num_outputs=n_classes,
        keras_verbose=2,
        print_model_summary=False,
        conv_layers=[
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["max_pool2d", (2, 2), None, "valid", 0.0],
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["max_pool2d", (2, 2), None, "valid", 0.0],
        ],
        ff_layers=[
            [512, "relu", 0.0, 0.2, True, "normal"],
            [512, "relu", 0.0, 0.2, True, "normal"]
        ],
        stopping_patience=10,
        epochs=1000
    )

    # Train CNN
    cnn.train(data["x_train"], data["y_train_one_hot"], data["x_valid"], data["y_valid_one_hot"], load_model=True)

    # Evaluate CNN
    cnn_results = cnn.evaluate(data["x_test"], data["y_test_one_hot"])

    # Get CNN labels
    y_cnn_train = cnn.predict(data["x_train"])
    y_gen = cnn.predict(x_gen)

    x_both = join_data([data["x_train"], x_gen])
    x_both = x_both.reshape((x_both.shape[0], -1))

    y_both = join_data([y_cnn_train, y_gen])
    x_both, y_both = shuffle(x_both, y_both)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO FIT THE MAPPING FUNCTION

    # Create SDT
    sdt_raw = SoftBinaryDecisionTree(
        name="sdt_raw_emnist_letter_uppercase",
        num_inputs=n_features,
        num_outputs=n_classes,
        max_depth=5,
        keras_verbose=2,
        penalty_decay=0.50,
        inv_temp=0.01,
        ema_win_size=1000,
        penalty_strength=1e+1,
        batch_size=4,
        learning_rate=1e-03,
        stopping_patience=5,
        epochs=100
    )

    # Train SDT RAW
    sdt_raw.train(data["x_train_flat"], data["y_train_one_hot"], data["x_valid_flat"], data["y_valid_one_hot"], load_model=True)

    # Evaluate SDT RAW
    sdt_raw_results = sdt_raw.evaluate(data["x_test_flat"], data["y_test_one_hot"])

    # --------------------------------------------------------------------------------
    # # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE MULTI-LAYER PERCEPTRON
    #
    # # Create SDT MLP
    # sdt_mlp = SoftBinaryDecisionTree(
    #     name="sdt_mlp",
    #     num_inputs=n_features,
    #     num_outputs=n_classes
    # )
    #
    # # Train SDT MLP
    # sdt_mlp.train(data["x_train"], y_mlp_train, data["x_valid"], data["y_valid_one_hot"], load_model=True)
    #
    # # Evaluate SDT MLP
    # sdt_mlp_results = sdt_mlp.evaluate(data["x_test_flat"], data["y_test_one_hot"])

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN

    # Create SDT CNN
    sdt_cnn = SoftBinaryDecisionTree(
        name="sdt_cnn_emnist_letter_uppercase",
        num_inputs=n_features,
        num_outputs=n_classes,
        max_depth=5,
        keras_verbose=2,
        penalty_decay=0.50,
        inv_temp=0.01,
        ema_win_size=1000,
        penalty_strength=1e+1,
        batch_size=4,
        learning_rate=1e-03,
        stopping_patience=5,
        epochs=100
    )

    # Train SDT CNN
    sdt_cnn.train(data["x_train_flat"], y_cnn_train, data["x_valid_flat"], data["y_valid_one_hot"], load_model=True)

    # Evaluate SDT CNN
    sdt_cnn_results = sdt_cnn.evaluate(data["x_test_flat"], data["y_test_one_hot"])

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN WITH VAE

    # Create SDT VAE
    sdt_vae = SoftBinaryDecisionTree(
        name="sdt_cnn_vae_emnist_letter_uppercase",
        num_inputs=n_features,
        num_outputs=n_classes,
        max_depth=5,
        keras_verbose=2,
        penalty_decay=0.50,
        inv_temp=0.01,
        ema_win_size=1000,
        penalty_strength=1e+1,
        batch_size=4,
        learning_rate=1e-03,
        stopping_patience=5,
        epochs=100
    )

    # Train SDT VAE
    sdt_vae.train(x_both, y_both, data["x_valid_flat"], data["y_valid_one_hot"], load_model=True)

    # Evaluate SDT VAE
    sdt_vae_results = sdt_vae.evaluate(data["x_test_flat"], data["y_test_one_hot"])

    # --------------------------------------------------------------------------------

    return vae_results, cnn_results, sdt_raw_results, sdt_cnn_results, sdt_vae_results
Пример #2
0
def train_models():

    # Load the data
    data = load_data(dataset="MNIST", already_downloaded=True)

    # Get the number of input features
    n_rows, n_cols = np.shape(data["x_train"])[1:]
    n_features = n_rows * n_cols
    n_classes = np.unique(data["y_train"]).shape[0]

    # Downsample the data
    x_train_flat_ds, y_train_ds, indices = balanced_sample_maker(data["x_train_flat"], data["y_train"], 10000,
                                                                 random_seed=1234)

    x_valid_flat_ds, y_valid_ds, indices = balanced_sample_maker(data["x_valid_flat"], data["y_valid"], 5000,
                                                                 random_seed=1234)

    x_test_flat_ds, y_test_ds, indices = balanced_sample_maker(data["x_test_flat"], data["y_test"], 5000,
                                                               random_seed=1234)

    # Create other data
    x_train_ds = x_train_flat_ds.reshape((x_train_flat_ds.shape[0], n_rows, n_cols))
    y_train_one_hot_ds = tf.keras.utils.to_categorical(y_train_ds, n_classes)

    x_valid_ds = x_valid_flat_ds.reshape((x_valid_flat_ds.shape[0], n_rows, n_cols))
    y_valid_one_hot_ds = tf.keras.utils.to_categorical(y_valid_ds, n_classes)

    x_test_ds = x_test_flat_ds.reshape((x_test_flat_ds.shape[0], n_rows, n_cols))
    y_test_one_hot_ds = tf.keras.utils.to_categorical(y_test_ds, n_classes)

    # Print some info
    unique, counts = np.unique(y_train_ds, return_counts=True)
    print("y_train_ds class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(y_valid_ds, return_counts=True)
    print("y_valid_ds class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(y_test_ds, return_counts=True)
    print("y_test_ds class count: ", dict(zip(unique, counts)))

    # --------------------------------------------------------------------------------
    # TRAIN THE VARIATIONAL AUTOENCODER TO FIT THE UNIT FUNCTION

    # Create VAE
    vae = VariationalAutoEncoder(
        name="vae_mnist_ds",
        num_inputs=n_features,
        keras_verbose=True
    )

    # Train VAE
    vae.train(x_train_flat_ds, x_valid_flat_ds, load_model=True)

    # Evaluate VAE
    vae_results = vae.evaluate(x_test_flat_ds)

    # Generate new data
    x_gen_flat = vae.sample(40000)

    # Reshape to images for CCN
    x_gen = np.array([np.reshape(x_gen_flat[i], [n_rows, n_cols]) for i in range(len(x_gen_flat))])

    # --------------------------------------------------------------------------------
    # TRAIN A CNN TO FIT THE MAPPING FUNCTION

    # Create CNN
    cnn = ConvDNN(
        name="cnn_mnist_ds",
        img_rows=n_rows,
        img_cols=n_cols,
        num_outputs=n_classes
    )

    # Train CNN
    cnn.train(x_train_ds, y_train_one_hot_ds, x_valid_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate CNN
    cnn_results = cnn.evaluate(x_test_ds, y_test_one_hot_ds)

    # Get CNN labels
    y_cnn_train = cnn.predict(x_train_ds)
    y_gen = cnn.predict(x_gen)

    x_both = join_data([x_train_ds, x_gen])
    x_both = x_both.reshape((x_both.shape[0], -1))

    y_both = join_data([y_cnn_train, y_gen])
    x_both, y_both = shuffle(x_both, y_both)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO FIT THE MAPPING FUNCTION

    # Create SDT
    sdt_raw = SoftBinaryDecisionTree(
        name="sdt_raw_mnist_ds",
        num_inputs=n_features,
        num_outputs=n_classes
    )

    # Train SDT RAW
    sdt_raw.train(x_train_flat_ds, y_train_one_hot_ds, x_valid_flat_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate SDT RAW
    sdt_raw_results = sdt_raw.evaluate(x_test_flat_ds, y_test_one_hot_ds)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN

    # Create SDT CNN
    sdt_cnn = SoftBinaryDecisionTree(
        name="sdt_cnn_mnist_ds",
        num_inputs=n_features,
        num_outputs=n_classes
    )

    # Train SDT CNN
    sdt_cnn.train(x_train_flat_ds, y_cnn_train, x_valid_flat_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate SDT CNN
    sdt_cnn_results = sdt_cnn.evaluate(x_test_flat_ds, y_test_one_hot_ds)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN WITH VAE

    # Create SDT VAE
    sdt_vae = SoftBinaryDecisionTree(
        name="sdt_cnn_vae_mnist_ds",
        num_inputs=n_features,
        num_outputs=n_classes
    )

    # Train SDT VAE
    sdt_vae.train(x_both, y_both, x_valid_flat_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate SDT VAE
    sdt_vae_results = sdt_vae.evaluate(x_test_flat_ds, y_test_one_hot_ds)

    # --------------------------------------------------------------------------------

    return vae_results, cnn_results, sdt_raw_results, sdt_cnn_results, sdt_vae_results
Пример #3
0
def train_models():

    # Load the data
    data = load_data(dataset="EMNIST_Letter_Uppercase", already_downloaded=True)

    # Get the number of input features
    n_rows, n_cols = np.shape(data["x_train"])[1:]
    n_features = n_rows * n_cols
    n_classes = np.unique(data["y_train"]).shape[0]

    # Downsample the data
    x_train_flat_ds, y_train_ds, indices = balanced_sample_maker(data["x_train_flat"], data["y_train"], 10000,
                                                                 random_seed=1234)

    x_valid_flat_ds, y_valid_ds, indices = balanced_sample_maker(data["x_valid_flat"], data["y_valid"], 5000,
                                                                 random_seed=1234)

    x_test_flat_ds, y_test_ds, indices = balanced_sample_maker(data["x_test_flat"], data["y_test"], 5000,
                                                               random_seed=1234)

    # Create other data
    x_train_ds = x_train_flat_ds.reshape((x_train_flat_ds.shape[0], n_rows, n_cols))
    y_train_one_hot_ds = tf.keras.utils.to_categorical(y_train_ds, n_classes)

    x_valid_ds = x_valid_flat_ds.reshape((x_valid_flat_ds.shape[0], n_rows, n_cols))
    y_valid_one_hot_ds = tf.keras.utils.to_categorical(y_valid_ds, n_classes)

    x_test_ds = x_test_flat_ds.reshape((x_test_flat_ds.shape[0], n_rows, n_cols))
    y_test_one_hot_ds = tf.keras.utils.to_categorical(y_test_ds, n_classes)

    # Print some info
    unique, counts = np.unique(y_train_ds, return_counts=True)
    print("y_train_ds class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(y_valid_ds, return_counts=True)
    print("y_valid_ds class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(y_test_ds, return_counts=True)
    print("y_test_ds class count: ", dict(zip(unique, counts)))

    # --------------------------------------------------------------------------------
    # TRAIN THE VARIATIONAL AUTOENCODER TO FIT THE UNIT FUNCTION

    # Create VAE
    vae = VariationalAutoEncoder(
        name="vae_emnist_letter_uppercase_ds",
        keras_verbose=2,
        num_inputs=n_features,
        encoder_layers=[
            [512, "relu", 0.0, 0.1, True, "gaussian"],
            [256, "relu", 0.0, 0.1, True, "gaussian"],
            [128, "relu", 0.0, 0.1, True, "gaussian"]
        ],
        decoder_layers=[
            [128, "relu", 0.0, 0.1, True, "gaussian"],
            [256, "relu", 0.0, 0.1, True, "gaussian"],
            [512, "relu", 0.0, 0.1, True, "gaussian"]
        ],
        batch_size=128,
        learning_rate=0.001,
        stopping_patience=10,
        epochs=2000
    )

    # Train VAE
    vae.train(x_train_flat_ds, x_valid_flat_ds, load_model=True)

    # Evaluate VAE
    vae_results = vae.evaluate(x_test_flat_ds)

    # Generate new data
    x_gen_flat = vae.sample(50000)

    # Reshape to images for CCN
    x_gen = np.array([np.reshape(x_gen_flat[i], [n_rows, n_cols]) for i in range(len(x_gen_flat))])

    # --------------------------------------------------------------------------------
    # TRAIN A CNN TO FIT THE MAPPING FUNCTION

    # Create CNN
    cnn = ConvDNN(
        name="cnn_emnist_letter_uppercase_ds",
        img_rows=n_rows,
        img_cols=n_cols,
        num_outputs=n_classes,
        keras_verbose=2,
        print_model_summary=False,
        conv_layers=[
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["max_pool2d", (2, 2), None, "valid", 0.0],
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["conv2d", 64, (3, 3), (1, 1), "valid", "relu", True, 0.0, 0.0, 0.0, 0.2],
            ["max_pool2d", (2, 2), None, "valid", 0.0],
        ],
        ff_layers=[
            [512, "relu", 0.0, 0.2, True, "normal"],
            [512, "relu", 0.0, 0.2, True, "normal"]
        ],
        stopping_patience=10,
        epochs=1000
    )

    # Train CNN
    cnn.train(x_train_ds, y_train_one_hot_ds, x_valid_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate CNN
    cnn_results = cnn.evaluate(x_test_ds, y_test_one_hot_ds)

    # Get CNN labels
    y_cnn_train = cnn.predict(x_train_ds)
    y_gen = cnn.predict(x_gen)

    x_both = join_data([x_train_ds, x_gen])
    x_both = x_both.reshape((x_both.shape[0], -1))

    y_both = join_data([y_cnn_train, y_gen])
    x_both, y_both = shuffle(x_both, y_both)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO FIT THE MAPPING FUNCTION

    # Create SDT
    sdt_raw = SoftBinaryDecisionTree(
        name="sdt_raw_emnist_letter_uppercase_ds",
        num_inputs=n_features,
        num_outputs=n_classes,
        max_depth=5,
        keras_verbose=2,
        penalty_decay=0.50,
        inv_temp=0.01,
        ema_win_size=1000,
        penalty_strength=1e+1,
        batch_size=4,
        learning_rate=1e-03,
        stopping_patience=5,
        epochs=100
    )

    # Train SDT RAW
    sdt_raw.train(x_train_flat_ds, y_train_one_hot_ds, x_valid_flat_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate SDT RAW
    sdt_raw_results = sdt_raw.evaluate(x_test_flat_ds, y_test_one_hot_ds)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN

    # Create SDT CNN
    sdt_cnn = SoftBinaryDecisionTree(
        name="sdt_cnn_emnist_letter_uppercase_ds",
        num_inputs=n_features,
        num_outputs=n_classes,
        max_depth=5,
        keras_verbose=2,
        penalty_decay=0.50,
        inv_temp=0.01,
        ema_win_size=1000,
        penalty_strength=1e+1,
        batch_size=4,
        learning_rate=1e-03,
        stopping_patience=5,
        epochs=100
    )

    # Train SDT CNN
    sdt_cnn.train(x_train_flat_ds, y_cnn_train, x_valid_flat_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate SDT CNN
    sdt_cnn_results = sdt_cnn.evaluate(x_test_flat_ds, y_test_one_hot_ds)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN WITH VAE

    # Create SDT VAE
    sdt_vae = SoftBinaryDecisionTree(
        name="sdt_cnn_vae_emnist_letter_uppercase_ds",
        num_inputs=n_features,
        num_outputs=n_classes,
        max_depth=5,
        keras_verbose=2,
        penalty_decay=0.50,
        inv_temp=0.01,
        ema_win_size=1000,
        penalty_strength=1e+1,
        batch_size=4,
        learning_rate=1e-03,
        stopping_patience=5,
        epochs=100
    )

    # Train SDT VAE
    sdt_vae.train(x_both, y_both, x_valid_flat_ds, y_valid_one_hot_ds, load_model=True)

    # Evaluate SDT VAE
    sdt_vae_results = sdt_vae.evaluate(x_test_flat_ds, y_test_one_hot_ds)

    # --------------------------------------------------------------------------------

    return vae_results, cnn_results, sdt_raw_results, sdt_cnn_results, sdt_vae_results
Пример #4
0
def train_models():

    # Load the data
    data = load_data(dataset="MNIST", already_downloaded=True)

    # Get the number of input features
    n_rows, n_cols = np.shape(data["x_train"])[1:]
    n_features = n_rows * n_cols
    n_classes = np.unique(data["y_train"]).shape[0]

    # Print some info
    for key in data.keys():
        x = data[key]
        print(key, " : ", np.shape(x))

    unique, counts = np.unique(data["y_train"], return_counts=True)
    print("y_train class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(data["y_valid"], return_counts=True)
    print("y_valid class count: ", dict(zip(unique, counts)))

    unique, counts = np.unique(data["y_test"], return_counts=True)
    print("y_test class count: ", dict(zip(unique, counts)))

    # --------------------------------------------------------------------------------
    # TRAIN THE VARIATIONAL AUTOENCODER TO FIT THE UNIT FUNCTION

    # Create VAE
    vae = VariationalAutoEncoder(name="vae_mnist",
                                 num_inputs=n_features,
                                 epochs=1000)

    # Train VAE
    vae.train(data["x_train_flat"], data["x_valid_flat"], load_model=True)

    # Evaluate VAE
    vae_results = vae.evaluate(data["x_test_flat"])

    # Generate new data
    x_gen_flat = vae.sample(20000)

    # Reshape to images for CCN
    x_gen = np.array([
        np.reshape(x_gen_flat[i], [n_rows, n_cols])
        for i in range(len(x_gen_flat))
    ])

    # --------------------------------------------------------------------------------
    # TRAIN THE MULTI-LAYER PERCEPTRON TO FIT THE MAPPING FUNCTION

    # Create MLP
    mlp = MultiLayerPerceptron(name="mlp_mnist",
                               num_inputs=n_features,
                               num_outputs=n_classes)

    # Train MLP
    mlp.train(data["x_train_flat"],
              data["y_train_one_hot"],
              data["x_valid_flat"],
              data["y_valid_one_hot"],
              load_model=True)

    # Evaluate MLP
    mlp_results = mlp.evaluate(data["x_test_flat"], data["y_test_one_hot"])

    # Get MLP labels
    # y_mlp_train = mlp.predict(data["x_train_flat"])
    # y_gen = mlp.predict(x_gen)
    #
    # x_both = join_data([data["x_train_flat"], x_gen])
    # y_both = join_data([y_mlp_train, y_gen])
    # x_both, y_both = shuffle(x_both, y_both)

    # --------------------------------------------------------------------------------
    # TRAIN A CNN TO FIT THE MAPPING FUNCTION

    # Create CNN
    cnn = ConvDNN(name="cnn_mnist",
                  img_rows=n_rows,
                  img_cols=n_cols,
                  num_outputs=n_classes)

    # Train CNN
    cnn.train(data["x_train"],
              data["y_train_one_hot"],
              data["x_valid"],
              data["y_valid_one_hot"],
              load_model=True)

    # Evaluate CNN
    cnn_results = cnn.evaluate(data["x_test"], data["y_test_one_hot"])

    # Get CNN labels
    y_cnn_train = cnn.predict(data["x_train"])
    y_gen = cnn.predict(x_gen)

    x_both = join_data([data["x_train"], x_gen])
    x_both = x_both.reshape((x_both.shape[0], -1))

    y_both = join_data([y_cnn_train, y_gen])
    x_both, y_both = shuffle(x_both, y_both)

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO FIT THE MAPPING FUNCTION

    # Create SDT
    sdt_raw = SoftBinaryDecisionTree(name="sdt_raw_mnist",
                                     num_inputs=n_features,
                                     num_outputs=n_classes)

    # Train SDT RAW
    sdt_raw.train(data["x_train_flat"],
                  data["y_train_one_hot"],
                  data["x_valid_flat"],
                  data["y_valid_one_hot"],
                  load_model=True)

    # Evaluate SDT RAW
    sdt_raw_results = sdt_raw.evaluate(data["x_test_flat"],
                                       data["y_test_one_hot"])

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN

    # Create SDT CNN
    sdt_cnn = SoftBinaryDecisionTree(name="sdt_cnn_mnist",
                                     num_inputs=n_features,
                                     num_outputs=n_classes)

    # Train SDT CNN
    sdt_cnn.train(data["x_train_flat"],
                  y_cnn_train,
                  data["x_valid_flat"],
                  data["y_valid_one_hot"],
                  load_model=True)

    # Evaluate SDT CNN
    sdt_cnn_results = sdt_cnn.evaluate(data["x_test_flat"],
                                       data["y_test_one_hot"])

    # --------------------------------------------------------------------------------
    # TRAIN A SOFT DECISION TREE TO APPROXIMATE THE CNN WITH VAE

    # Create SDT VAE
    sdt_vae = SoftBinaryDecisionTree(name="sdt_cnn_vae_mnist",
                                     num_inputs=n_features,
                                     num_outputs=n_classes)

    # Train SDT VAE
    sdt_vae.train(x_both,
                  y_both,
                  data["x_valid_flat"],
                  data["y_valid_one_hot"],
                  load_model=True)

    # Evaluate SDT VAE
    sdt_vae_results = sdt_vae.evaluate(data["x_test_flat"],
                                       data["y_test_one_hot"])

    # --------------------------------------------------------------------------------

    return vae_results, cnn_results, sdt_raw_results, sdt_cnn_results, sdt_vae_results