def train(train_loop_func, logger, args): # Check that GPUs are actually available use_cuda = not args.no_cuda train_samples = 118287 # Setup multi-GPU if necessary args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='smddp', init_method='env://') args.N_gpu = torch.distributed.get_world_size() else: args.N_gpu = 1 if args.seed is None: args.seed = np.random.randint(1e4) if args.distributed: args.seed = (args.seed + torch.distributed.get_rank()) % 2**32 print("Using seed = {}".format(args.seed)) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) np.random.seed(seed=args.seed) # Setup data, defaults dboxes = dboxes300_coco() encoder = Encoder(dboxes) cocoGt = get_coco_ground_truth(args) train_loader = get_train_loader(args, args.seed - 2**31) val_dataset = get_val_dataset(args) val_dataloader = get_val_dataloader(val_dataset, args) ssd300 = SSD300(backbone=ResNet(args.backbone, args.backbone_path)) args.learning_rate = args.learning_rate * args.N_gpu * (args.batch_size / 32) start_epoch = 0 iteration = 0 loss_func = Loss(dboxes) if use_cuda: ssd300.cuda() loss_func.cuda() optimizer = torch.optim.SGD(tencent_trick(ssd300), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer=optimizer, milestones=args.multistep, gamma=0.1) if args.amp: ssd300, optimizer = amp.initialize(ssd300, optimizer, opt_level='O2') if args.distributed: ssd300 = DDP(ssd300) if args.checkpoint is not None: if os.path.isfile(args.checkpoint): load_checkpoint(ssd300.module if args.distributed else ssd300, args.checkpoint) checkpoint = torch.load(args.checkpoint, map_location=lambda storage, loc: storage.cuda(torch.cuda.current_device())) start_epoch = checkpoint['epoch'] iteration = checkpoint['iteration'] scheduler.load_state_dict(checkpoint['scheduler']) optimizer.load_state_dict(checkpoint['optimizer']) else: print('Provided checkpoint is not path to a file') return inv_map = {v: k for k, v in val_dataset.label_map.items()} total_time = 0 if args.mode == 'evaluation': acc = evaluate(ssd300, val_dataloader, cocoGt, encoder, inv_map, args) if args.local_rank == 0: print('Model precision {} mAP'.format(acc)) return mean, std = generate_mean_std(args) for epoch in range(start_epoch, args.epochs): start_epoch_time = time.time() scheduler.step() iteration = train_loop_func(ssd300, loss_func, epoch, optimizer, train_loader, val_dataloader, encoder, iteration, logger, args, mean, std) end_epoch_time = time.time() - start_epoch_time total_time += end_epoch_time if torch.distributed.get_rank() == 0: throughput = train_samples / end_epoch_time logger.update_epoch_time(epoch, end_epoch_time) logger.update_throughput_speed(epoch, throughput) if epoch in args.evaluation: acc = evaluate(ssd300, val_dataloader, cocoGt, encoder, inv_map, args) if args.save and args.local_rank == 0: print("saving model...") obj = {'epoch': epoch + 1, 'iteration': iteration, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'label_map': val_dataset.label_info} if args.distributed: obj['model'] = ssd300.module.state_dict() else: obj['model'] = ssd300.state_dict() save_path = os.path.join(args.save, f'epoch_{epoch}.pt') torch.save(obj, save_path) logger.log('model path', save_path) train_loader.reset() if torch.distributed.get_rank() == 0: DLLogger.log((), { 'Total training time': '%.2f' % total_time + ' secs' }) logger.log_summary()
def train(train_loop_func, logger, args): if args.amp: amp_handle = amp.init(enabled=args.fp16) # Check that GPUs are actually available use_cuda = not args.no_cuda # Setup multi-GPU if necessary args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.N_gpu = torch.distributed.get_world_size() else: args.N_gpu = 1 if args.seed is None: args.seed = np.random.randint(1e4) if args.distributed: args.seed = (args.seed + torch.distributed.get_rank()) % 2**32 print("Using seed = {}".format(args.seed)) torch.manual_seed(args.seed) np.random.seed(seed=args.seed) # Setup data, defaults dboxes = dboxes300_coco() encoder = Encoder(dboxes) cocoGt = get_coco_ground_truth(args) train_loader = get_train_loader(args, args.seed - 2**31) val_dataset = get_val_dataset(args) val_dataloader = get_val_dataloader(val_dataset, args) ssd300 = SSD300(backbone=args.backbone) args.learning_rate = args.learning_rate * args.N_gpu * (args.batch_size / 32) start_epoch = 0 iteration = 0 loss_func = Loss(dboxes) if use_cuda: ssd300.cuda() loss_func.cuda() if args.fp16 and not args.amp: ssd300 = network_to_half(ssd300) if args.distributed: ssd300 = DDP(ssd300) optimizer = torch.optim.SGD(tencent_trick(ssd300), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer=optimizer, milestones=args.multistep, gamma=0.1) if args.fp16: if args.amp: optimizer = amp_handle.wrap_optimizer(optimizer) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=128.) if args.checkpoint is not None: if os.path.isfile(args.checkpoint): load_checkpoint(ssd300, args.checkpoint) checkpoint = torch.load(args.checkpoint, map_location=lambda storage, loc: storage. cuda(torch.cuda.current_device())) start_epoch = checkpoint['epoch'] iteration = checkpoint['iteration'] scheduler.load_state_dict(checkpoint['scheduler']) ssd300.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) else: print('Provided checkpoint is not path to a file') return inv_map = {v: k for k, v in val_dataset.label_map.items()} total_time = 0 if args.mode == 'evaluation': acc = evaluate(ssd300, val_dataloader, cocoGt, encoder, inv_map, args) if args.local_rank == 0: print('Model precision {} mAP'.format(acc)) return mean, std = generate_mean_std(args) for epoch in range(start_epoch, args.epochs): start_epoch_time = time.time() scheduler.step() iteration = train_loop_func(ssd300, loss_func, epoch, optimizer, train_loader, val_dataloader, encoder, iteration, logger, args, mean, std) end_epoch_time = time.time() - start_epoch_time total_time += end_epoch_time if args.local_rank == 0: logger.update_epoch_time(epoch, end_epoch_time) if epoch in args.evaluation: acc = evaluate(ssd300, val_dataloader, cocoGt, encoder, inv_map, args) if args.local_rank == 0: logger.update_epoch(epoch, acc) if args.save and args.local_rank == 0: print("saving model...") obj = { 'epoch': epoch + 1, 'iteration': iteration, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'label_map': val_dataset.label_info } if args.distributed: obj['model'] = ssd300.module.state_dict() else: obj['model'] = ssd300.state_dict() torch.save(obj, './models/epoch_{}.pt'.format(epoch)) train_loader.reset() print('total training time: {}'.format(total_time))
def train(train_loop_func, logger, args): # Check that GPUs are actually available use_cuda = not args.no_cuda # Setup multi-GPU if necessary args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.N_gpu = torch.distributed.get_world_size() else: args.N_gpu = 1 if args.seed is None: args.seed = np.random.randint(1e4) if args.distributed: args.seed = (args.seed + torch.distributed.get_rank()) % 2**32 print("Using seed = {}".format(args.seed)) torch.manual_seed(args.seed) np.random.seed(seed=args.seed) # Setup data, defaults dboxes = dboxes300_coco() encoder = Encoder(dboxes) cocoGt = get_coco_ground_truth(args) train_loader = get_train_loader(args, args.seed - 2**31) val_dataset = get_val_dataset(args) val_dataloader = get_val_dataloader(val_dataset, args) ssd300 = SSD300(backbone=ResNet(args.backbone, args.backbone_path)) # args.learning_rate = args.learning_rate * args.N_gpu * (args.batch_size / 32) print(f"Actual starting LR: {args.learning_rate}") start_epoch = 0 iteration = 0 loss_func = Loss(dboxes) if use_cuda: ssd300.cuda() loss_func.cuda() # optimizer = torch.optim.SGD(tencent_trick(ssd300), lr=args.learning_rate, # momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) optimizer = torch.optim.AdamW(tencent_trick(ssd300), lr=args.learning_rate, betas=(0.8, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=True) # scheduler = MultiStepLR(optimizer=optimizer, milestones=args.multistep, gamma=0.1) # scheduler = CosineAnnealingWarmRestarts(optimizer=optimizer, T_0=20, T_mult=1, eta_min=1e-6) scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=args.epochs, eta_min=1e-6) # scheduler = OneCycleLR(optimizer, max_lr=0.003, epochs=41, steps_per_epoch=173) # scheduler = CyclicLR(optimizer, base_lr=args.learning_rate, max_lr=2*args.learning_rate, # step_size_up=173*3, step_size_down=173*10) if args.amp: ssd300, optimizer = amp.initialize(ssd300, optimizer, opt_level='O2') if args.distributed: ssd300 = DDP(ssd300) if args.checkpoint is not None: if os.path.isfile(args.checkpoint): load_checkpoint(ssd300.module if args.distributed else ssd300, args.checkpoint) checkpoint = torch.load(args.checkpoint, map_location=lambda storage, loc: storage. cuda(torch.cuda.current_device())) start_epoch = checkpoint['epoch'] iteration = checkpoint['iteration'] scheduler.load_state_dict(checkpoint['scheduler']) optimizer.load_state_dict(checkpoint['optimizer']) else: print('Provided checkpoint is not path to a file') return inv_map = {v: k for k, v in val_dataset.label_map.items()} total_time = 0 if args.mode == 'evaluation': acc = evaluate(ssd300, val_dataloader, cocoGt, encoder, inv_map, args) if args.local_rank == 0: print('Model precision {} mAP'.format(acc)) return mean, std = generate_mean_std(args) for epoch in range(start_epoch, args.epochs): start_epoch_time = time.time() # scheduler.step() iteration = train_loop_func(ssd300, loss_func, epoch, optimizer, scheduler, train_loader, val_dataloader, encoder, iteration, logger, args, mean, std) end_epoch_time = time.time() - start_epoch_time total_time += end_epoch_time # https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate scheduler.step() if args.local_rank == 0: logger.update_epoch_time(epoch, end_epoch_time) if epoch in args.evaluation: acc = evaluate(ssd300, val_dataloader, cocoGt, encoder, inv_map, args) if args.local_rank == 0: logger.update_epoch(epoch, acc) if args.save and args.local_rank == 0: print("saving model...") obj = { 'epoch': epoch + 1, 'iteration': iteration, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'label_map': val_dataset.label_info } if args.distributed: obj['model'] = ssd300.module.state_dict() else: obj['model'] = ssd300.state_dict() torch.save(obj, './models/epoch_{}.pt'.format(epoch)) train_loader.reset() print('total training time: {}'.format(total_time))