return new_cmap if __name__ == '__main__': parse_args_and_merge_const() random_state = np.random.RandomState(const.RANDOM_SEED) if os.path.exists('models') is False: os.makedirs('models') df = pd.read_csv(const.base_path + const.USE_CSV) inf_df = df inf_dataset = DeepFashionCAPDataset(inf_df, random_state=random_state, mode=const.DATASET_PROC_METHOD_INF, base_path=const.base_path) inf_dataloader = torch.utils.data.DataLoader( inf_dataset, batch_size=1, #const.INF_BATCH_SIZE, shuffle=False, num_workers=6) inf_step = len(inf_dataloader) net = const.USE_NET(const.USE_IORN) net = net.to(const.device) net.load_state_dict(torch.load(const.INIT_MODEL), strict=False) writer = SummaryWriter(const.INF_DIR) inf_step = len(inf_dataloader)
random_state = np.random.RandomState(const.RANDOM_SEED) # const.DATASET_PROC_METHOD_TRAIN = 'ELASTIC_ROTATION_BBOXRESIZE' # const.DATASET_PROC_METHOD_TRAIN = 'ROTATION_BBOXRESIZE' const.DATASET_PROC_METHOD_TRAIN = 'BBOXRESIZE' const.USE_CSV = 'info.csv' # const.USE_CSV = 'debug_info.csv' if os.path.exists('models') is False: os.makedirs('models') print(const.base_path) df = pd.read_csv(const.base_path + const.USE_CSV) train_df = df[df['evaluation_status'] == 'val'] train_dataset = DeepFashionCAPDataset(train_df, base_path=const.base_path, random_state=random_state, mode=const.DATASET_PROC_METHOD_TRAIN) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=const.BATCH_SIZE, shuffle=True, num_workers=4) # val_df = df[df['evaluation_status'] == 'val'] # val_dataset = DeepFashionCAPDataset(val_df, mode=const.DATASET_PROC_METHOD_VAL) # val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=const.VAL_BATCH_SIZE, shuffle=False, num_workers=1) # for i in range(100): # train_dataset.plot_sample(i) # step = 0 for i, sample in enumerate(train_dataloader): step += 1
# Initialize random generators with given seed if const.RANDOM_SEED != None: torch.manual_seed(const.RANDOM_SEED) np.random.seed(const.RANDOM_SEED) random.seed(const.RANDOM_SEED) random_state = np.random.RandomState(const.RANDOM_SEED) if os.path.exists('models') is False: os.makedirs('models') df = pd.read_csv(const.base_path + const.USE_CSV) train_df = df[df['evaluation_status'] == 'train'] train_dataset = DeepFashionCAPDataset(train_df, random_state=random_state, mode=const.DATASET_PROC_METHOD_TRAIN, base_path=const.base_path, el_alpha=const.EL_ALPHA, el_sigma=const.EL_SIGMA) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=const.BATCH_SIZE, shuffle=True, num_workers=8) val_df = df[df['evaluation_status'] == 'val'] val_dataset = DeepFashionCAPDataset(val_df, random_state=random_state, mode=const.DATASET_PROC_METHOD_VAL, base_path=const.base_path) val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=const.VAL_BATCH_SIZE, shuffle=False, num_workers=8)
import pandas as pd import torch import torch.utils.data from src import const from src.utils import parse_args_and_merge_const from tensorboardX import SummaryWriter import os if __name__ == '__main__': parse_args_and_merge_const() if os.path.exists('models') is False: os.makedirs('models') df = pd.read_csv(base_path + const.USE_CSV) train_df = df[df['evaluation_status'] == 'train'] train_dataset = DeepFashionCAPDataset(train_df, mode=const.DATASET_PROC_METHOD_TRAIN) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=const.BATCH_SIZE, shuffle=True, num_workers=4) val_df = df[df['evaluation_status'] == 'test'] val_dataset = DeepFashionCAPDataset(val_df, mode=const.DATASET_PROC_METHOD_VAL) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=const.VAL_BATCH_SIZE, shuffle=False, num_workers=4) val_step = len(val_dataloader) net = const.USE_NET()
"{0}, (label: {1})".format( classes[preds[idx].max(dim=0)[1].item()], classes[int(labels[idx].item())]), color=("green" if preds[idx].max( dim=0)[1].item() == int(labels[idx].item()) else "red")) return fig if __name__ == '__main__': parse_args_and_merge_const() if os.path.exists('models') is False: os.makedirs('models') df = pd.read_csv(base_path + const.USE_CSV) test_df = df[df['evaluation_status'] == 'test'] test_dataset = DeepFashionCAPDataset(test_df, mode=const.DATASET_PROC_METHOD_TRAIN) test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=const.BATCH_SIZE, shuffle=True, num_workers=4) test_step = len(test_dataloader) net = const.USE_NET() net.load_state_dict(torch.load(const.save_model_path)) net = net.to(const.device) writer = SummaryWriter(const.VAL_DIR) step = 0 print("Start Evaluate") net.eval()