def make_viz(): """Produce visualization.""" # Set plot settings ylim = [-5, 5] gpv.update_rc_params() # Define model params gp1_hypers = {'ls': 1., 'alpha': 1.5, 'sigma': 1e-1} gp2_hypers = {'ls': 3., 'alpha': 1., 'sigma': 1e-1} # Define domain x_min = -10. x_max = 10. domain = RealDomain({'min_max': [(x_min, x_max)]}) # Drawn one sample path from gp1 gp1 = SimpleGp(gp1_hypers) sample_path = gput.get_sample_path(gp1, domain) n_obs_list = [3, 5, 10, 20, 30, 60] # Make full data data_full = gput.get_data_from_sample_path( sample_path, gp1.params.sigma*4.0, 100 ) # Define set of domain points dom_pt_list = list(np.linspace(x_min, x_max, 200)) for n_obs in n_obs_list: data = get_data_subset(data_full, n_obs) # Define gp2 (posterior) gp2 = SimpleGp(gp2_hypers) gp2.set_data(data) # Define gp3 (modified prior) gp3_hypers = copy.deepcopy(gp2_hypers) gp3_hypers['alpha'] += 0.01 gp3 = SimpleGp(gp3_hypers) lb_list, ub_list = get_lb_ub_lists(dom_pt_list, gp2, gp3, data, False) # Various plotting plt.figure() # Plot C_t bounds plt.plot(dom_pt_list, lb_list, 'g--') plt.plot(dom_pt_list, ub_list, 'g--') plt.fill_between(dom_pt_list, lb_list, ub_list, color='wheat', alpha=0.5) # Plot GP posterior save_str = 'viz_' + str(n_obs) gpv.visualize_gp_and_sample_path(gp2, domain, data, sample_path, show_sp=False, ylim=ylim, save_str=save_str) plt.close()
def make_viz(): """Produce visualization.""" # Set plot settings ylim = [-5, 5] gpv.update_rc_params() # Define model params gp1_hypers = {'ls': 1., 'alpha': 1.5, 'sigma': 1e-1} gp2_hypers = {'ls': 3., 'alpha': 1., 'sigma': 1e-1} # Define domain x_min = -10. x_max = 10. domain = RealDomain({'min_max': [(x_min, x_max)]}) # Define gp1 and gp2 gp1 = SimpleGp(gp1_hypers) gp2 = SimpleGp(gp2_hypers) # Plot GP priors data = Namespace(X=[], y=np.array([])) gpv.visualize_gp(gp1, domain, data, std_mult=2, ylim=ylim, save_str='viz_prior_true') plt.close() gpv.visualize_gp(gp2, domain, data, std_mult=2, ylim=ylim, save_str='viz_prior') plt.close()
def run_gplcb(): """Run LCB algorithm with Gaussian process (GP-LCB).""" # Set plot settings ylim = [-5, 5] gpv.update_rc_params() # Define model params gp1_hypers = {'ls': 1., 'alpha': 1.5, 'sigma': 1e-1} gp2_hypers = {'ls': 3., 'alpha': 1., 'sigma': 1e-1} # Define domain x_min = -10. x_max = 10. domain = RealDomain({'min_max': [(x_min, x_max)]}) # Drawn one sample path from gp1 gp1 = SimpleGp(gp1_hypers) sample_path_nonoise = gput.get_sample_path(gp1, domain) # Convert to noisy sample_path observations sample_path = gput.get_noisy_sample_path(sample_path_nonoise, gp1.params.sigma) # Setup BO: initialize data data = Namespace(X=[], y=np.array([])) init_x = np.random.choice(sample_path.x, 5)[3] data = query_function_update_data(init_x, data, sample_path) # Define set of domain points dom_pt_list = list(sample_path.x) # NOTE: confirm if correct n_iter = 30 print('Finished iter: ', end='') for i in range(n_iter): # Define gp2 (posterior) gp2 = SimpleGp(gp2_hypers) gp2.set_data(data) # Compute lb_list test_pts = [np.array([dom_pt]) for dom_pt in dom_pt_list] mean_list, std_list = gp2.get_gp_post_mu_cov(test_pts, full_cov=False) conf_mean = np.array(mean_list) std_mult = 3. lb_list = conf_mean - std_mult * np.array( std_list) # technically is np ndarray ub_list = conf_mean + std_mult * np.array( std_list) # technically is np ndarray # Compute next_query_point min_idx = np.nanargmin(lb_list) next_query_point = dom_pt_list[min_idx] # Various plotting plt.figure() # Plot C_t bounds plt.plot(dom_pt_list, mean_list, 'k--', lw=2) plt.plot(dom_pt_list, lb_list, 'k--') plt.plot(dom_pt_list, ub_list, 'k--') plt.fill_between(dom_pt_list, lb_list, ub_list, color='lightsteelblue', alpha=0.5) # Plot GP posterior save_str = 'viz_' + str(i) gpv.visualize_sample_path_and_data(sample_path_nonoise, data, ylim=ylim, save_str=save_str) plt.close() # update data data = query_function_update_data(next_query_point, data, sample_path) print('{}, '.format(i), end='') print('Data:') print(data)
def run_cslcb(): """Run LCB algorithm with confidence sequence (CS-LCB).""" # Set plot settings ylim = [-5, 5] gpv.update_rc_params() # Define model params gp1_hypers = {'ls': 1., 'alpha': 1.5, 'sigma': 1e-1} gp2_hypers = {'ls': 1., 'alpha': 1.5, 'sigma': 1e-1} # Define domain x_min = -10. x_max = 10. domain = RealDomain({'min_max': [(x_min, x_max)]}) # Drawn one sample path from gp1 gp1 = SimpleGp(gp1_hypers) sample_path_nonoise = gput.get_sample_path(gp1, domain) # Convert to noisy sample_path observations sample_path = gput.get_noisy_sample_path(sample_path_nonoise, gp1.params.sigma) # Setup BO: initialize data data = Namespace(X=[], y=np.array([])) init_x = np.random.choice(sample_path.x, 5)[2] data = query_function_update_data(init_x, data, sample_path) # Define set of domain points dom_pt_list = list(sample_path.x) # NOTE: confirm if correct n_iter = 30 print('Finished iter: ', end='') for i in range(n_iter): # Define gp2 (posterior) gp2 = SimpleGp(gp2_hypers) gp2.set_data(data) # Define gp3 (modified prior) gp3_hypers = copy.deepcopy(gp2_hypers) gp3_hypers['alpha'] += 0.01 gp3 = SimpleGp(gp3_hypers) lb_list, ub_list = get_lb_ub_lists(dom_pt_list, gp2, gp3, data, False) min_idx = np.nanargmin(lb_list) next_query_point = dom_pt_list[min_idx] # Various plotting plt.figure() # Plot C_t bounds plt.plot(dom_pt_list, lb_list, 'g--') plt.plot(dom_pt_list, ub_list, 'g--') plt.fill_between(dom_pt_list, lb_list, ub_list, color='wheat', alpha=0.5) # Plot GP posterior save_str = 'viz_' + str(i) gpv.visualize_sample_path_and_data(sample_path_nonoise, data, ylim=ylim, save_str=save_str) plt.close() # update data data = query_function_update_data(next_query_point, data, sample_path) print('{}, '.format(i), end='') print('Data:') print(data)