def main(): start = time.time() args = parse_cl_args() #get hyperparams for command line supplied tsc tsc_str = args.tsc hp_dict = get_hp_dict(tsc_str) hp_order = sorted(list(hp_dict.keys())) hp_list = [hp_dict[hp] for hp in hp_order] #use itertools to produce cartesian product of hyperparams hp_set = list(itertools.product(*hp_list)) print(str(len(hp_set))+' total hyper params') #where to find metrics hp_travel_times = {} metrics_fp = 'metrics/'+tsc_str #where to print hp results path = 'hyperparams/'+tsc_str+'/' check_and_make_dir(path) fname = get_time_now() hp_fp = path+fname+'.csv' write_line_to_file(hp_fp, 'a+', ','.join(hp_order)+',mean,std,mean+std' ) #run each set of hp from cartesian product for hp in hp_set: hp_cmds = create_hp_cmds(args, hp_order, hp) #print(hp_cmds) for cmd in hp_cmds: os.system(cmd) #read travel times, store mean and std for determining best hp set hp_str = ','.join([str(h) for h in hp]) travel_times = get_hp_results(metrics_fp+'/traveltime/') hp_travel_times[hp_str] = {'mean':int(np.mean(travel_times)), 'std':int(np.std(travel_times))} write_temp_hp(hp_str, hp_travel_times[hp_str], hp_fp) #generate_returns(tsc_str, 'metrics/', hp_str) save_hp_performance(travel_times, 'hp/'+tsc_str+'/', hp_str) #remove all metrics for most recent hp shutil.rmtree(metrics_fp) #remove temp hp and write ranked final results os.remove(hp_fp) rank_hp(hp_travel_times, hp_order, tsc_str, hp_fp) print('All hyperparamers performance can be viewed at: '+str(hp_fp)) print('TOTAL HP SEARCH TIME') secs = time.time()-start print(str(int(secs/60.0))+' minutes ')
def __init__(self, idx, args, barrier, netdata, agent_ids, rl_stats, exp_replay): Process.__init__(self) self.idx = idx self.args = args self.barrier = barrier self.netdata = netdata self.agent_ids = agent_ids self.rl_stats = rl_stats self.exp_replay = exp_replay self.save_t = 0 self.replay_fp = self.args.save_replay + '/' + self.args.tsc + '/' #for saving agent progress if self.idx == 0: path = 'tmp/' check_and_make_dir(path) now = get_time_now() self.updates_path = path + str( self.args.tsc) + '_' + str(now) + '_agent_updates.csv' self.replay_path = path + str( self.args.tsc) + '_' + str(now) + '_agent_replay.csv' self.n_exp_path = path + str( self.args.tsc) + '_' + str(now) + '_agent_nexp.csv' self.tsc_ids = list(sorted(list(self.netdata['inter'].keys()))) #write header line with tsc names write_line_to_file(self.updates_path, 'a+', ','.join([now] + self.tsc_ids)) write_line_to_file(self.replay_path, 'a+', ','.join([now] + self.tsc_ids)) write_line_to_file(self.n_exp_path, 'a+', ','.join([now] + self.tsc_ids))
def write_n_exp_progress(self): n_replay = [str(self.rl_stats[i]['n_exp']) for i in self.tsc_ids] write_line_to_file( self.n_exp_path, 'a+', ','.join([get_time_now()]+n_replay) )
def write_replay_progress(self): n_replay = [str(len(self.exp_replay[i])) for i in self.tsc_ids] write_line_to_file( self.replay_path, 'a+', ','.join([get_time_now()]+n_replay) )
def write_training_progress(self): updates = [str(self.rl_stats[i]['updates']) for i in self.tsc_ids] write_line_to_file( self.updates_path, 'a+', ','.join([get_time_now()]+updates) )
def main(): start = time.time() args = parse_cl_args() #get hyperparams for command line supplied tsc tsc_str = args.tsc hp_dict = get_hp_dict(tsc_str) hp_order = sorted(list(hp_dict.keys())) hp_list = [hp_dict[hp] for hp in hp_order] #use itertools to produce cartesian product of hyperparams hp_set = list(itertools.product(*hp_list)) print(str(len(hp_set))+' total hyper params') #where to find metrics hp_travel_times = {} metrics_fp = 'metrics/'+tsc_str #where to print hp results path = 'hyperparams/'+tsc_str+'/' check_and_make_dir(path) # hp_optimize for real cycle fname = 'real' hp_fp = path+fname+'.csv' write_line_to_file(hp_fp, 'a+', ','.join(hp_order)+',mean,std,mean+std' ) tt_hp = {} # store all travel_times for corresponding hp for hp in hp_set: hp_cmds = create_hp_cmds(args, hp_order, hp) #print(hp_cmds) travel_times = [] if args.demand == 'linear': assert False, 'demand should be real!!' elif args.demand == 'dynamic': assert False, 'demand should be real!!' elif args.demand == 'real': cmd_test = hp_cmds[-1] + ' -demand ' + 'real' else: assert False, 'Please only give demand: real' os.system(cmd_test) #read travel times, store mean and std for determining best hp set hp_str = ','.join([str(h) for h in hp]) travel_times += get_hp_results(metrics_fp+'/traveltime/') tt_hp[hp_str] = travel_times # !!!!!!!!!! the travel_times is cumulated in 10 processes n_v_pass = len(travel_times) #remove all metrics for most recent hp shutil.rmtree(metrics_fp) hp_travel_times[hp_str] = {'mean':int(np.mean(travel_times)), 'std':int(np.std(travel_times)), 'n_v_pass':n_v_pass} write_temp_hp(hp_str, hp_travel_times[hp_str], hp_fp) #generate_returns(tsc_str, 'metrics/', hp_str) save_hp_performance(travel_times, 'hp/'+tsc_str+'/', hp_str) #remove temp hp and write ranked final results os.remove(hp_fp) rank_hp(hp_travel_times, hp_order, tsc_str, hp_fp, tt_hp) print('All hyperparamers performance can be viewed at: '+str(hp_fp)) print('TOTAL HP SEARCH TIME') secs = time.time()-start print(str(int(secs/60.0))+' minutes ') ''' # hp_optimize for each linear cycle for idx_cycle in range(30): fname = 'cycle_'+str(idx_cycle).zfill(2) hp_fp = path+fname+'.csv' write_line_to_file(hp_fp, 'a+', ','.join(hp_order)+',mean,std,mean+std' ) #run each set of hp from cartesian product tt_hp = {} # store all travel_times for corresponding hp for hp in hp_set: hp_cmds = create_hp_cmds(args, hp_order, hp) #print(hp_cmds) travel_times = [] # only train the ddpg and dqn with the predefined sine wave if args.tsc == 'ddpg' or args.tsc == 'dqn': os.system(hp_cmds[0]) if args.demand == 'linear': cmd_test = hp_cmds[-1] + ' -demand ' + 'linear_' + str(idx_cycle).zfill(2) elif args.demand == 'dynamic': cmd_test = hp_cmds[-1] + ' -demand ' + 'dynamic' elif args.demand == 'real': cmd_test = hp_cmds[-1] + ' -demand ' + 'real' else: assert False, 'Please only give demand: linear, dynamic or real' os.system(cmd_test) #read travel times, store mean and std for determining best hp set hp_str = ','.join([str(h) for h in hp]) travel_times += get_hp_results(metrics_fp+'/traveltime/') tt_hp[hp_str] = travel_times # !!!!!!!!!! the travel_times is cumulated in 8 processes n_v_pass = len(travel_times) #remove all metrics for most recent hp shutil.rmtree(metrics_fp) hp_travel_times[hp_str] = {'mean':int(np.mean(travel_times)), 'std':int(np.std(travel_times)), 'n_v_pass':n_v_pass} write_temp_hp(hp_str, hp_travel_times[hp_str], hp_fp) #generate_returns(tsc_str, 'metrics/', hp_str) save_hp_performance(travel_times, 'hp/'+tsc_str+'/', hp_str) #remove temp hp and write ranked final results os.remove(hp_fp) rank_hp(hp_travel_times, hp_order, tsc_str, hp_fp, tt_hp) # ??? 记得把simlen 调到3600 # ??? 根据30 cycle 的结果调整hyper parameter 的范围,主要是maxpressure 和 uniform # ?????? n_vehilce_passed # ?????? n_vehilce_passed # ?????? n_vehilce_passed # ?????? n_vehilce_passed # ?????? n_vehilce_passed # ?????? n_vehilce_passed # ?????? n_vehilce_passed # ???? 找个地方把每个cycle 的best hyperparameter, mean, std, n_vehilce_passed 存起来 print('All hyperparamers performance can be viewed at: '+str(hp_fp)) print('TOTAL HP SEARCH TIME') secs = time.time()-start print(str(int(secs/60.0))+' minutes ') ''' '''
def write_temp_hp(hp, results, fp): write_line_to_file(fp, 'a+', hp+','+str(results['mean'])+','+str(results['std'])+','+str(results['mean']+results['std']))